• Title/Summary/Keyword: High power electromagnetic

Search Result 954, Processing Time 0.028 seconds

High performance metal-only fan-beam reflectarray with a delta source applicable for an electromagnetic fence

  • Cho, Yong-Heui
    • International Journal of Contents
    • /
    • v.7 no.4
    • /
    • pp.44-49
    • /
    • 2011
  • The scattering solutions for multiple rectangular metallic gratings in a perfectly conducting plane excited by the TE and TM delta sources are presented using an overlapping T-block method. A reflectarray composed of rectangular metallic gratings shows fanbeam radiation patterns that are useful for an electromagnetic fence. The scattering characteristics of multiple rectangular gratings were computed in terms of total radiated power and antenna directivity. The design method of a fan-beam reflectarray to obtain high directivity was also compared with superdirective radiation and parabolic reflector phase.

3D electromagnetic design and electrical characteristics analysis of a 10-MW-class high-temperature superconducting synchronous generator for wind power

  • Kim, J.H.;Park, S.I.;Le, T.D.;Kim, H.M.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.2
    • /
    • pp.47-53
    • /
    • 2014
  • In this paper, the general electromagnetic design process of a 10-MW-class high-temperature superconducting (HTS) synchronous generator that is intended to be utilized for large scale offshore wind generator is discussed. This paper presents three-dimensional (3D) electromagnetic design proposal and electrical characteristic analysis results of a 10-MW-class HTS synchronous generator for wind power. For more detailed design by reducing the errors of a two-dimensional (2D) design owing to leakage flux in air-gap, we redesign and analyze the 2D conceptual electromagnetic design model of the HTS synchronous generator using 3D finite element analysis (FEA) software. Then electrical characteristics which include the no-load and full-load voltage of generator, harmonic contents of these two load conditions, voltage regulation and losses of generator are analyzed by commercial 3D FEA software.

Modeling and Control Method for High-power Electromagnetic Transmitter Power Supplies

  • Yu, Fei;Zhang, Yi-Ming
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.679-691
    • /
    • 2013
  • High-power electromagnetic transmitter power supplies are an important part of deep geophysical exploration equipment. This is especially true in complex environments, where the ability to produce a highly accurate and stable output and safety through redundancy have become the key issues in the design of high-power electromagnetic transmitter power supplies. To solve these issues, a high-frequency switching power cascade based emission power supply is designed. By combining the circuit averaged model and the equivalent controlled source method, a modular mathematical model is established with the on-state loss and transformer induction loss being taken into account. A triple-loop control including an inner current loop, an outer voltage loop and a load current forward feedback, and a digitalized voltage/current sharing control method are proposed for the realization of the rapid, stable and highly accurate output of the system. By using a new algorithm referred to as GAPSO, which integrates a genetic algorithm and a particle swarm algorithm, the parameters of the controller are tuned. A multi-module cascade helps to achieve system redundancy. A simulation analysis of the open-loop system proves the accuracy of the established system and provides a better reflection of the characteristics of the power supply. A parameter tuning simulation proves the effectiveness of the GAPSO algorithm. A closed-loop simulation of the system and field geological exploration experiments demonstrate the effectiveness of the control method. This ensures both the system's excellent stability and the output's accuracy. It also ensures the accuracy of the established mathematical model as well as its ability to meet the requirements of practical field deep exploration.

Design and Fabrication of a Low Frequency Vibration Driven High-Efficiency Electromagnetic Energy Harvester (저 주파수용 FR-4 스프링 기반 고효율 진동형 전자기식 에너지 하베스터의 설계 및 제작)

  • Lee, Byung-Chul;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.298-302
    • /
    • 2012
  • This paper describes the design and fabrication of a low frequency vibration driven high-efficiency electromagnetic energy harvester based on FR(Flame Resistance)-4 spring which converts mechanical energy into useful electrical power. The fabricated generator consists of a vertically polarized NdFeB permanent magnet attached to the center of spring and a planar type copper coil which has higher efficiency compare with cylindrical type coil. ANSYS finite analysis and Matlab were used to determine the resonance frequency and output power. The generator is capable of producing up to 1.36 $V_{pp}$ at 9 Hz, which has the maximum power of 639 ${\mu}W$ with a load resistance of $3.25k{\Omega}$.

Development of Improved EMC Filter for EFT in Power Supply

  • Bae, Dae-Hwan;Kim, Dong-Il;Song, Jae-Man
    • Journal of electromagnetic engineering and science
    • /
    • v.1 no.1
    • /
    • pp.100-104
    • /
    • 2001
  • Since the most of malfunctions in the industrial equipment controlled by processors is consist of the electrical fast transient (EFT)$^{[1],[2]}$TEX>, the International Electrotechnical Commission (IEC) prepared the dummy signal to test the immunity level of the equipments. To work out a countermeasure for the malfunction, We designed a new electromagnetic compatibility (EMC) filter for high power supply, which is consisted of a feed-through capacitor and ferrite materials with high permeability. The ferrite material is surrounded with a power cable or is inserted on the cable’s second layer in order to increase common-mode inductance. We have obtained a excellent insertion loss characteristics over the frequency band from 150 kHz to 30 MHz. The developed new EMC filter satisfy IEC 61000-4-4 and is suitable for industrial, militaly, and medical equipments with reduced malfuntions.

  • PDF

Design and Fabrication of MMIC Limiter with GaAs PIU Diode (GaAs PIN Diode를 이용한 MMIC 리미터 설계 및 제작)

  • 정명득;강현일
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.6
    • /
    • pp.625-629
    • /
    • 2003
  • Low loss and high power MMIC limiters with GaAs PM diode were designed and fabricated. The new epitaxial structure of GaAs PIN diode was proposed in order to increase the high power capability. 2 types of limiter circuits have been designed and the limiting powers have been measured. Results indicated that the limiting power was depended on the circuit topology. Limiting power levels of 2-stage limiters are measured 16 ㏈m and 22 ㏈m at 14 ㎓, respectively.

A Design and Implementation of High Power Amplifier for ISM-band (ISM 대역용 고출력 전력증폭기의 설계 몇 구현)

  • Choi, Seong-Keon;Park, Jun-Seok;Lee, Moon-Que;Cheon, Chang-Yul
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.326-329
    • /
    • 2003
  • In this paper, we designed and implemented a high power amplifier(HPA) to achieve the high Power Added Efficiency(PAE) over 40% at the 90W output power for the ISM-band(fo=2.45GHz). HPA presented in this paper has 3-stage drive amplifier and 1-stage final amplifier. In the final amplifier, we utilized balanced amplifier configuration with GaAs FET and each of two amplifiers has the push-pull configuration to increase PAE. From the measurement results, we obtained PAE of 42.95% at the 90.57W output power.

  • PDF

Emissive Electromagnetic Field Measurement and Analysis for High Speed PLC on Medium Voltage Power-Line Channel (고속 전력선 통신을 위한 중전압 선로의 방사전자파 측정 및 분석)

  • 김선효;김상태;이영철;신철재
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.1
    • /
    • pp.54-61
    • /
    • 2003
  • This paper shows the results of emissive electromagnetic field characteristics on medium voltage power line(22.9 kV). The measurements were taken when communications signals were coupled into the 22.9 kV main wire of medium voltage power-line in a frequency range of 9 kHz to 30 MHz. The results of the measurement are as follows-emissive electromagnetic Held characteristics from multi carrier signals were superior to a single carrier signal. And we confirmed the PLC transmission distance was 1.8 km when multi-carrier transmission power was 20 dBm. Electric field strength was under the 40 dBuV/m at 30 MHz when 10 m method was measured.

Analysis of Electromagnetic Field Around Distribution Line (배전선로 주변에서의 전자계 분포 해석)

  • Kwon, Myung-Rak
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.10
    • /
    • pp.672-676
    • /
    • 2017
  • Electrical energy is playing an increasingly vital role as the primary energy source in everyday life. With the increase in electric power consumption, power facilities are under an increasing stress and must operate at a high capacity. Consequently, the demand for electric power cables in power transmission and distribution lines is rapidly increasing. Underground distribution lines have been steadily replacing the aboveground lines owing to the increase in electric power demand and the need to increase the supply voltage. In addition to line damage, worker safety is of primary concern in this type of underground infrastructure. In this study, to improve the safety of workers dealing with underground transmission lines, we analyzed the electromagnetic field generated around the distribution line and determined the basic criteria for developing a device that can detect a live underground line.

Design of a Novel Multi-Dimensional HCOC Multi-code Spread Spectrum System Using Pre-coding Technique for High Speed Data Transmission of DS-CDMA

  • Kong, Hyung-Yun;Lee, Dong-Un
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • Recently, Mc(Multi-code) modulation/demodulation(modem) technique has been explored for high speed data transmission in wireless environment. The conventional Mc modem generates some side effects such as allocating Walsh codes, which motivates to propose a novel Mc modem method with sub-code. Our proposed system should expanded the size of sub-code to provide high-rate data transmission, which also affect adversely to the performance of the system with high PAPR(Peak to Average Power Ratio). Thus, in this paper, we propose a novel pre-coded Multi-Dimensional HCOC(High Capacity Orthogonal Code) Mc modem technique to reduce the high PAPR, which enables the performance improvement. This proposed system can be easily designed by concatenating HCOC Mc modem with the generic Mc modem. The pre-coding technique that is used in this paper is CAC(Constant Amplitude Coding), that helps the system maintain the constant transmission power and reduce the maximum transmission power.