• Title/Summary/Keyword: High pitch

Search Result 906, Processing Time 0.036 seconds

Computational Study on Unsteady Mechanism of Spinning Detonations

  • Matsuo, Akiko;Sugiyama, Yuta
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.367-373
    • /
    • 2008
  • Spinning detonations propagating in a circular tube were numerically investigated with a one-step irreversible reaction model governed by Arrhenius kinetics. Activation energy is used as parameter as 10, 20, 27 and 35, and the specific heat ratio and the heat release are fixed as 1.2 and 50. The time evolution of the simulation results was utilized to reveal the propagation mechanism of single-headed spinning detonation. The track angle of soot record on the tube wall was numerically reproduced with various levels of activation energy, and the simulated unique angle was the same as that of the previous reports. The maximum pressure histories of the shock front on the tube wall showed stable pitch at Ea=10, periodical unstable pitch at Ea=20 and 27 and unstable pitch consisting of stable, periodical unstable and weak modes at Ea=35, respectively. In the weak mode, there is no Mach leg on the shock front, where the pressure level is much lower than the other modes. The shock front shapes and the pressure profiles on the tube wall clarified the mechanisms of these stable and unstable modes. In the stable pitch at Ea=10, the maximum pressure history on the tube wall remained nearly constant, and the steady single Mach leg on the shock front rotated at a constant speed. The high and low frequency pressure oscillations appeared in the periodical unstable pitch at Ea=20 and 27 of the maximum pressure history. The high frequency was one cycle of a self-induced oscillation by generation and decay in complex Mach interaction due to the variation in intensity of the transverse wave behind the shock front. Eventually, sequential high frequency oscillations formed the low frequency behavior because the frequency behavior was not always the same for each cycle. In unstable pitch at Ea=35, there are stable, periodical unstable and weak modes in one cycle of the low frequency oscillation in the maximum pressure history, and the pressure amplitude of low frequency was much larger than the others. The pressure peak appeared after weak mode, and the stable, periodical unstable and weak modes were sequentially observed with pressure decay. A series of simulations of spinning detonations clarified that the unsteady mechanism behind the shock front depending on the activation energy.

  • PDF

Computational Study on Unsteady Mechanism of Spinning Detonations

  • Matsuo, Akiko;Sugiyama, Yuta
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.367-373
    • /
    • 2008
  • Spinning detonations propagating in a circular tube were numerically investigated with a one-step irreversible reaction model governed by Arrhenius kinetics. Activation energy is used as parameter as 10, 20, 27 and 35, and the specific heat ratio and the heat release are fixed as 1.2 and 50. The time evolution of the simulation results was utilized to reveal the propagation mechanism of single-headed spinning detonation. The track angle of soot record on the tube wall was numerically reproduced with various levels of activation energy, and the simulated unique angle was the same as that of the previous reports. The maximum pressure histories of the shock front on the tube wall showed stable pitch at Ea=10, periodical unstable pitch at Ea=20 and 27 and unstable pitch consisting of stable, periodical unstable and weak modes at Ea=35, respectively. In the weak mode, there is no Mach leg on the shock front, where the pressure level is much lower than the other modes. The shock front shapes and the pressure profiles on the tube wall clarified the mechanisms of these stable and unstable modes. In the stable pitch at Ea=10, the maximum pressure history on the tube wall remained nearly constant, and the steady single Mach leg on the shock front rotated at a constant speed. The high and low frequency pressure oscillations appeared in the periodical unstable pitch at Ea=20 and 27 of the maximum pressure history. The high frequency was one cycle of a self-induced oscillation by generation and decay in complex Mach interaction due to the variation in intensity of the transverse wave behind the shock front. Eventually, sequential high frequency oscillations formed the low frequency behavior because the frequency behavior was not always the same for each cycle. In unstable pitch at Ea=35, there are stable, periodical unstable and weak modes in one cycle of the low frequency oscillation in the maximum pressure history, and the pressure amplitude of low frequency was much larger than the others. The pressure peak appeared after weak mode, and the stable, periodical unstable and weak modes were sequentially observed with pressure decay. A series of simulations of spinning detonations clarified that the unsteady mechanism behind the shock front depending on the activation energy.

  • PDF

Changes in Image Quality and Dose according to Exposure Parameters of Brain CT (두부 CT의 노출 파라메타에 따른 화질과 선량의 변화)

  • Choi, Seok yoon;Im, In Chul
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.705-711
    • /
    • 2019
  • Currently, the brain CT scan of the latest equipment lacks the study of parameter change and dose change and especially of noise, uniformity analysis and dose change. Therefore, this study attempted to study the phenomenon that occurs at this time by analyzing tube voltage, slice thickness, and pitch change in exposure parameters when using high specification CT. Experimental results show that uniformity is better when using high voltage, thick slice thickness selection, and minimum pitch. As a result of the combination, the most uniformity condition was 140 kVp, 10 mm and pitch 0.5. Noise was found to be improved regardless of pitch by increasing tube voltage and slice thickness. The radiation dose increased linearly with tube voltage and pitch. Therefore, the results of this study will serve as a reference for the use of High specification brain CT.

Image Quality and Dose Assessment According to Examination Mode during Head CT Examination (두부 CT 검사 시 검사 모드에 따른 화질 및 선량평가)

  • Gang, Heon-Hyo;Choi, Woo-Jeon;Kim, Dong-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.4
    • /
    • pp.437-444
    • /
    • 2021
  • To evaluate the usefulness of Volume Axial Mode by comparing analyzing the exposure dose of the patients and the quality of each images from CT images obtained from high pitch mode using the local phantom or volume axial mode to determine the usefulness of he volume axial mode in diagnosing the head and cervical disease in adults. High Pitch Mode, Helical Mode, and Volume axial Mode as adult phantom were tested according to 70 kVp, 80 kVp, and 100 kVp tube voltages during an adult frontal CT scans. The equipment used was GE's Revolution (GE Healthcare, Wisconsin USA) model and iMED X-ray Phantom. The exposure dose of phantom was compared using the images obtained from each protocol, and the image quality was compared by calculating SNR and CNR by setting ROI on each image. When examined using Volume Axial Mode, the exposure dose of phantom was measured 17.12% lower than Helical Mode, 5.35% lower than High Pitch Mode, and both SNR and CNR were improved. Volume Axial Mode is a useful test that reduces investigation time without table movement using high speed rotary scanner, and in which exposure dose is reduced and image quality is improved by acquiring images in a short time of 0.28 seconds of phantom than using High Pitch Mode and Helical Mode. In addition, the fast testing time of Volume Axial Mode can be seen as the biggest advantage CT scans of emergency patients or patients with physical discomfort.

A Study on Characteristics of Children's Voice Preference from Different Pitch (음도 차이에 따른 아동의 선호 음성 특성 연구)

  • Ham, Eun-Seon;Lim, Kyung-Suk;Yi, So-Hee;Kim, Ha-Kyung
    • Speech Sciences
    • /
    • v.15 no.3
    • /
    • pp.175-181
    • /
    • 2008
  • The aim of this study was to survey 'voice preference' of children from among three voice pitches, which are high-pitch, mid-pitch and low pitch, and understand acoustic characteristics of the best voice chosen. To record distinctive pitches, Dr. Speech(ver. 4.0 Tiger Electronics) was used and we analyzed their choices. Also, we measured subglottal air pressure in aerodynamic analyze and phonatory aerodynamic system(Model 6600, KAY) was used. As a result children preferred to the low-pitch yet there was not any difference by sex. We fined them to prefer higher HNR voice to lower jitter and shimmer voice rate.

  • PDF

Development on Test Procedure of Pitch and Yaw Bearings for Wind Turbine (풍력발전기용 피치/요 베어링의 시험절차 개발)

  • Nam, Ju Seok;Han, Jeong Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.3
    • /
    • pp.355-362
    • /
    • 2015
  • Test procedure for the design verification of wind turbine pitch and yaw bearings has been developed. Test items were selected to evaluate operational reliability of pitch and yaw bearings by considering loading and operational conditions, and by analyzing the design criteria of pitch and yaw bearings. The developed test items consisted of preliminary test, fatigue load test, extreme load test, low temperature environmental test and dismantling inspection after all the test were completed. Because it reflects the actual operational conditions of the pitch and yaw bearings, the developed test procedure has high reliability and can verify the basic design considerations in the international standard and guidelines.

Development of Real Time Pitch Tracer for Training of Musical Tune (음정 교정을 위한 실시간 Pitch Tracer의 개발)

  • Jung, Young-Chul;Choi, Doo-Il;Cho, Woo-Yeon
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.529-532
    • /
    • 2002
  • This research treated development of real time pitch tracer for training of musical tune of speech signal and pre-processing and post-processing technics were proposed to get higher accuracy in extraction of pitch. Autocorrelation Function was used to get pitch frequency from 64Hz to 980Hz in real time. Half Rectifier method and Envelop extraction method as a pre-processing was used to get higher accuracy in pitch detection, and improved results were obtained on noised speech signal. Post-processing method using periodicity of Autocorrelation was proposed to get higher accuracy in the high frequency region.

  • PDF

Aerodynamic Characteristics of Several Airfoils for Design of Passive Pitch Control Module of 10 kW Class (10kW 급 풍력 블레이드의 수동형 피치제어 모듈의 설계를 위한 여러가지 익형의 공력 특성에 관한 연구)

  • Kang, Sang Kyun;Lee, Ji Hyun;Lee, Jang-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.6
    • /
    • pp.609-617
    • /
    • 2014
  • Even though the variable pitch control of a wind turbine blade is known as an effective component for power control over the rated wind speed, it has limited applicability to small wind turbines because of its relatively high cost on the price of small wind turbine. Instead, stall control is generally applied in the blade design without any additional cost. However, stall delay can frequently be caused by high turbulence around the turbine blade, and it can produce control failures through excessive rotational speed and overpowering the electrical generator. Therefore, a passive pitch control module should be considered, where the pitch moves with the aerodynamic forces of the blade and returns by the elastic restoring force. In this study, a method to calculate the pitch moment, torque, and thrust based on the lift and drag of the rotating blade wing was demonstrated, and several effective wing shapes were reviewed based on these forces. Their characteristics will be estimated with variable wind speed and be utilized as basic data for the design of the passive pitch control module.

The Carbonization Behaviors of Coal Tar Pitch for Mechanical Seal

  • Chae, Jae-Hong;Kim, Kyung-Ja;Cho, Kwang-Youn;Choi, Jae-Young
    • Carbon letters
    • /
    • v.2 no.3_4
    • /
    • pp.182-191
    • /
    • 2001
  • Quinoline insoluble formed by the heat treatment was hot-pressed near its softening point. The green body was stabilized in the temperature range of $300{\sim}400^{\circ}C$ and subsequently carbonized below $1300^{\circ}C$ in an argon atmosphere. The behaviors of QI formation was examined with varying the heat treatment temperature and the lapse of time of the sample carbonized at various temperatures. And the mechanical property, corrosion resistance, and friction behavior were also measured optimum content of mesophase pitch ensured a dense structure and high $LC_{(002)}$ value, which resulted in high mechanical properties, good corrosion resistance, and low-stable friction behavior.

  • PDF

A Research of Attitude Angle Control Structure for Thrust Vector Control of Missiles at Initial Boosting Phase (초기 추력편향제어를 위한 자세각제어 구조에 대한 연구)

  • Kim, Boo-Min;Whang, Ick-ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.10
    • /
    • pp.1523-1531
    • /
    • 2017
  • In general, the thrust vector control should be fast and stable in the initial launch phase. Two types of conventional controllers, one is for pitch angle control and the other is for pitch rate control, are designed based on the equation of motion without aerodynamics and are compared in the viewpoints of the stability margin and the time response performance. Also analyzed are the rejection capabilities to cope with high aerodynamic disturbances caused by high angle of attacks in initial booting phase. Additionally, time response features at actuator saturation are investigated. Based on those results, we suggest a controller structure which is more suitable for thrust vector control of missiles at initial booting phase.