• Title/Summary/Keyword: High permeability

Search Result 1,391, Processing Time 0.027 seconds

Characterization of Gas Permeation Properties of Polyimide Copolymer Membranes for OBIGGS (OBIGGS용 공중합체 폴리이미드를 이용한 기체분리막의 투과 특성평가)

  • Lee, Jung Moo;Lee, Myung Gun;Kim, Deuk Ju;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.24 no.4
    • /
    • pp.325-331
    • /
    • 2014
  • We synthesized novel polyimides with high gas permeability and selectivity for application of on board inert gas generation system (OBIGGS). 2,2-bis(3,4-carboxylphenyl) hexafluoropropane dianhydride (6FDA) and two kinds of amines with high permeability and solubility were used to prepare the novel polymide. 2,3,5,6-Tetramethyl-1,4-phenylenediamine (TMPD) was used to improve gas permeability and various kinds of diamines were used to improve the gas selectivity respectively. The polyimide copolymers were synthesized by commercial chemical imidization method and their average molecular weights were over 100,000g/mol. The glass temperature ($T_g$) and the thermal degradation temperature were characterized using differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA). The synthesized copolymers showed high $T_g$ over $300^{\circ}C$ and high thermal degradation temperature over $500^{\circ}C$. The gas permeation properties were measured by time-lag equipment. Although general polyimides showed very low gas permeability, synthesized polyimide copolymer showed high $O_2$ permeability of 36.21 barrer with high $O_2/N_2$ selectivity around 4.1. From this result, we confirm that these membranes have possibility to apply to OBIGGS.

Characteristics of Aquifer System and Change of Groundwater Level due to Earthquake in the Western Half of Jeju Island (제주도 서반부의 대수층 체계와 지진에 의한 지하수위 변동 특성)

  • Ok, Soon-Il;Hamm, Se-Yeong;Kim, Bong-Sang;Cheong, Jae-Yeol;Woo, Nam-Chil;Lee, Soo-Hyoung;Koh, Gi-Won;Park, Yun-Seok
    • Economic and Environmental Geology
    • /
    • v.43 no.4
    • /
    • pp.359-369
    • /
    • 2010
  • This study characterizes aquifer system and hydrogeologic property in the western half of Jeju Island where wells were drilled for regional water supply in three sub-areas (northwestern, western, and southwestern sub-areas). The aquifer system of the northwestern sub-area is largely composed of upper high-permeability layer, upper low-permeability layer, lower high-permeability layer, and lower low-permeability layer. On the other hand, the aquifer systems of the western and southwestern sub-areas are mostly composed of upper low-permeability layer, high-permeability layer, and lower low-permeability layer. Transmissivity and specific capacity decrease in the order of the northwestern, western, and southwestern sub-areas. The relationship between specific capacity and the top surface of tuff is negative with a high correlation coefficient of -0.848, indicating that the tuff acts as the bottom of the aquifer. Groundwater level change due to the 2004 Sumatra earthquake is an average of 23.74 cm in the northwestern sub-area, an average of 9.48 cm in the western sub-area, and none in the southwestern sub-area. Further, it is found that groundwater change due to the earthquake has a positive relationship with transmissivity and specific capacity.

Signal Transmission Properties of the Inductive Coupler using the High Permeability Magnetic Materials

  • Kim, Hyun-Sik;Kim, Jong-Ryung;Lee, Hae-Yeon;Kim, Ki-Uk;Huh, Jeong-Seob;Lee, Jun-Hui;Oh, Young-Woo;Byon, Woo-Bong;Gwak, Kwi-Yil;Ju, Seong-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.4
    • /
    • pp.339-343
    • /
    • 2006
  • We observed the application possibility of inductive coupler for the underground high-voltage power line communication by means of analysis of signal transmission characteristics and magnetic properties on annealing temperatures for high-permeability Fe-base amorphous alloys. The best electromagnetic and transmission characteristics were shown in nano-crystalline precipitated alloy annealed at temperature $510^{\circ}C$. The transmission characteristics in the low-frequency band depend on permeability of magnetic core materials and its properties of high-frequency band can be improved by impedance matching. Using the high pass filter embedded in the coupler, other noise signal band except for communication signals could be cut off.

Modeling of Gas Permeability Coefficient for Cementitious Materials with Relation to Water Permeability Coefficient (시멘트계 재료의 기체 투기계수 해석 및 투수계수와의 상관성 연구)

  • Yoon, In-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.2
    • /
    • pp.207-217
    • /
    • 2016
  • Permeability can not be expressed as a function of porosity alone, it depends on the porosity, pore size and distribution, and tortuosity of pore channels in concrete. There has been considerable interest in the relationship between microstructure and transport in cementitious materials, however, it is very rare to deal with the theoretical study on gas permeability coefficient in connection with carbonation of concrete and the effect of volumetric fraction of cement paste or aggregate on the permeability coefficient. The majority of these researches have not dealt with this issue combined with carbonation of concrete, although carbonation can significantly impact on the permeability coefficient of concrete. In this study, fundamental approach to compute gas permeability of (non)carbonated concrete is suggested. For several compositions of cement pastes, the gas permeability coefficient was calculated with the analytical formulation, followed by a microstructure-based model. For carbonated concrete, reduced porosity was calculated and this was used for calculating the gas permeability coefficeint. As the result of calculation of gas permeability for carbonated concrete, carbonation leaded to the significant reduction of gas permeability coefficient and this was obvious for concrete with high w/c ratio. Meanwhile, the relationship between gas permeability and water permeability has a linear function for cement paste based on Klinkenberg effect, however, which is not effective for concrete. For the evidence of the modeling, YOON's test was accomplished and these results were compared to each other.

The Effects of Microstructures and Some Additives (CoO and $Al_2O_3$) on the Magnetic Properties of Mn-Zn Ferrite (미세조직 및 첨가성분 (CoO와 $Al_2O_3$)이 Mn-Zn Ferrite의 자기적 성질에 미치는 영향)

  • 변수일;장승현
    • Journal of the Korean Ceramic Society
    • /
    • v.16 no.3
    • /
    • pp.142-154
    • /
    • 1979
  • The effects of microstructures and some additives $(CoO and Al_2O_3$) on the magnetic properties such as initial permeability, $\mu$-T curve, coercive force, and magnetic induction of MnZn ferrites have been studied. The powder was prepared by Hot Petroleum Drying Method. The basic composition of MnZn ferrites was 25.5mole % MnO, 22.0 mole% ZnO, 52.5 mole% $Fe_2O_3$. CoO in a concentration range from 0.05 to 0.5 mole% and $Al_2O_3$ from 2.5 to 7.5 mole% were added. Sintered density increased up to 97.5% of theoretical density. Permeability increased as average grain size increased, and that coercive force decreased as average grian size increased. Magnetic induction increased as sintered density increased. The variation of initial permeability with temperature in a temperature range from 0$^{\circ}$ to $60^{\circ}C$ was lowered (a flatter $\mu-T$ curve) as sintering temperature decreased. The compensation temperature To ofmagnetocrystalline anisotropy constant K1 and initial permeability varied with the species and amount of additives. When 0.05 mole% CoO was added to the basic composition, initial permeability at $15^{\circ}C$ increased from 5200 to 5900. The variation ofinitial permeability with temperature in a temperature range from 0^{\circ}to $60^{\circ}C$ was smaller (a flatter $\mu$-T curve) than that of the basic composition of Mn Zn ferrites. When 2.5 mole% $Al_2O_3$ was added, initial permeability at $15^{\circ}C$ decreased from 5200 to 3000. But the variation of initial permeability with temperature in a temperature range from 0$^{\circ}$to $60^{\circ}C$ was smaller (a flat ter $\mu-T$ curve) than when 0.05 mole% CoO was added. Experimental results showed that the conditions necessary for the occurrence of a very high permeability and a flat $\mu$-T curve were controversial even in a temperature range from $0^{\circ}$to $60^{\circ}C$.

  • PDF

Effect of Confining Pressure, Temperature, and Porosity on Permeability of Daejeon Granite: Experimental Study (대전 화강암의 투수계수에 미치는 구속압, 온도, 공극률의 영향: 실험적 연구)

  • Donggil Lee;Seokwon Jeon
    • Tunnel and Underground Space
    • /
    • v.34 no.1
    • /
    • pp.71-87
    • /
    • 2024
  • In deep geological disposal of high-level radioactive waste, the surrounding rock at the immediate vicinity of the deposition hole may experience localized changes in permeability due to in-situ stress at depth, swelling pressure from resaturated bentonite buffer, and the heat generated from the decay of radioactive isotopes. In this study, experimental data on changes in permeability of granite, a promising candidate rock type in South Korea, were obtained by applying various confining pressures and temperature conditions expected in the actual disposal environment. By conducting the permeability test on KURT granite specimens under three or more hydrostatic pressure conditions, the relation in which the permeability decreases exponentially as the confining pressure increases was derived. The temperature-induced changes in permeability were found to be negligible at temperatures below the expected maximum of 90℃. In addition, by establishing a relation in which the initial permeability is proportional to the power of the initial porosity, it was possible to estimate permeability value for granite with a specific porosity under a certain confining pressure.

Considerations of Permeability of Converter Slag by Laboratory and In-situ Tests (실내 및 현장시험에 의한 제강 슬래그의 투수성 고찰)

  • 이문수;이광찬
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.5
    • /
    • pp.93-105
    • /
    • 2001
  • The permeability of converter slag, replacing material of sand mat on improving soft clay foundation, was evaluated in the laboratory as well as in situ test. Effects of grain size, flow water time and aging were investigated using sea and fresh water Converter slag which has a grain size less than 10mm were submerged with fresh water and sea water. In fresh water, the coefficients of permeability in samples A and B were measured as 4.50${\times}$10$^{-2}$ cm per second and 1.20${\times}$10$^{-1}$ cm per second, respectively while as 1.88$\times$10$^{-2}$ cm per second and 3.86$\times$10$^{-1}$ cm per second in sea water. The condition of turbulent flow may exit and was experimentally certified based on the relationship of hydraulic gradient and seepage velocity. After 180 days in using sea water, the coefficients of permeability of samples A and B decreased ten times smaller than those initial values, and after that time continually decreased as for till 360 days. Finally, filling with voids in high-calcium quicklime(CaO) may result in the reduction of coefficient of permeability. In-situ coefficient of permeability however was Practically satisfactory.

  • PDF

Effect of Drying Methods on Longitudinal Liquid Permeability of Korean Pine

  • Lee, Min-Gyoung;Lu, Jianxiong;Jiang, Jiali;Kang, Ho-Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.5
    • /
    • pp.49-55
    • /
    • 2008
  • This study was carried to investigate the effects of steaming and four different drying methods on the longitudinal liquid permeability of Korean pine (Pinus koraiensis Sieb.et Zucc.) board. Four drying methods were air drying, conventional kiln drying, microwave-vacuum drying and high temperature drying. Darcy equation was used for calculating the specific permeability of the small sapwood specimens taken from the treated boards while capillary rising method was used for the heartwood specimens. The sapwood specimens were extracted with water and benzene-alcohol solution to examine the mechanism of liquid flow in treated wood. No significant correlation was found between specific permeability and the number of resin canals of the sapwood specimens. Extraction decreased the differences of specific permeabilities of the sapwood specimens between the five treatment methods. The effects of extraction on the longitudinal permeability are different between five treatments. The fluid path in heartwood was observed by dynamic observation method.

Breakage Index and Changes in Permeability of Bottom Ash for Use as Fill Material (성토재로의 활용을 위한 Bottom Ash의 파쇄지수 산정 및 투수계수 변화)

  • Kim, Donggeun;Son, Younghwan;Park, Jaesung;Bong, Taeho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.6
    • /
    • pp.107-115
    • /
    • 2015
  • The objective of the this study is to find the breakage index and changes in permeability of Bottom ash from thermoelectric power plants in Korea. Bottom ash was crushed by compaction according to compaction energy from 0 to $1661.4\;kN/m^2$. The particle size distribution was estimated by sieve analysis. The various breakage indexes were used for analyzing the change in particle size distribution and effect of compaction energy. In the result, breakage indexes were increased as compaction energy and initial upper 4.75 mm diameter ratio, but values and tendencies of breakage indexes appeared in different as calculation method of breakage indexes. The coefficient of permeability was decreased with particle breakage, but decreasing ratio of permeability was very small. Bottom ash has a higher permeability than the weathered soil and it is considered high usability as a permeable materials.

Surface Image Analysis for Evaluating Porosity and Permeability Coefficient of Permeable Concrete Block (투수 콘크리트 블록 공극률 및 투수계수 평가를 위한 표면 이미지 분석 기법 개발)

  • Jo, Sangbeom;Son, Younghwan;Kim, Donggeun;Jeon, Jihun;Kim, Taejin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.2
    • /
    • pp.47-57
    • /
    • 2023
  • The increase of impermeable area ratio is causing hydrologic cycle problems in urban areas and groundwater depletion in rural areas, permeable pavements are getting attention to expand permeable areas. The performance of the permeable concrete block pavement, which is part of the permeable pavement, is greatly affected by the porosity. In addition, the permeability coefficient is a major factor when designing permeable concrete block pavement. Existing porosity and permeability test methods have problems such as uneconomical or poor field applicability. The object of this study was to develop a methodology for evaluating porosity and permeability coefficient using a surface image of a permeable concrete block. Specimens are manufactured with various porosity ranges and porosity and permeability tests are performed. After surface image preprocessing, normalization and binarization methods were compared. Through this, the method with the highest correlation with the lab test result was determined. From the results, the PDR (pore determined ratio) was obtained. Simple linear regression analysis is performed with PDR and lab test results. The results showed a high correlation of R2 more than 0.8, and the errors were also low.