• Title/Summary/Keyword: High performance engine

Search Result 1,057, Processing Time 0.028 seconds

The Performance Evaluation of C/SiC Composite for Rocket Propulsion Systems (추진기관용 C/SiC 복합재료의 특성 평가)

  • Kim, Yun-Chul
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.433-438
    • /
    • 2009
  • The main objective of this research effort is to develop the performance of C/SiC composites manufactured by LSI (Liquid Silicon Infiltration) method for solid and liquid rocket propulsion system and ensure the performance analysis technique. The high performance and reliability of C/SiC composite are proved for solid and liquid rocket propulsion system. And the performance analysis technique related to mathematical ablation model is originated.

  • PDF

A Numerical Analysis for High Performance on DME High Pressure Fuel Pump Using Taguchi Method (Taguchi Method 을 이용한 DME 고압 연료 펌프에 대한 고성능 수치 해석)

  • SAMOSIR, BERNIKE FEBRIANA;CHO, WONJUN;LIM, OCKTAECK
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.6
    • /
    • pp.636-641
    • /
    • 2021
  • Using numerical analysis, various factors influencing the performance development of high-pressure pumps for Dimethyl Ether (DME) engines were identified and the impact of each factor was evaluated using Taguchi method. DME fuels are more compressive than diesel fuels and have the lower heat generation, so it is necessary to increase the size of the plunger and speed (RPM) of the pump as well. In addition, it is necessary to change the shape and design of control valve to control the discharge flow and pressure. In this study, various variables affecting the performance and flow rate increase of high-pressure pumps for DME engines are planned using Taguchi method, and the best design method is proposed using correlation of the most important variables. As a result, we were able to provide the design value needed for a six-liter engine and provide optimal conditions. The best combination factors to optimize the flow rate at RPM 2,000 and diameter plunger with 20 mm. The regression equation can also be used to optimize the flow rate; -8, 13+0, 2552 RPM +54, 17 diam. Plunger.

Improvement in Reduction Performance of LNT-Catalyst System with Micro-Reformer in Diesel Engine (연료 개질장치의 적용에 따른 디젤 LNT 환원성능 개선 특성)

  • Park, Cheol-Woong;Kim, Chang-Gi;Kim, Kwan-Tae;Lee, Dae-Hoon;Song, Young-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.7
    • /
    • pp.689-696
    • /
    • 2010
  • The Because of its high thermal efficiency, the direct injection (DI) diesel engine has emerged as a promising potential candidate in the field of transportation. However, the amount of nitrogen oxides ($NO_x$) increases in the local high-temperature regions and that of particulate matter (PM) increases in the diffusion flame region during diesel combustion. In the de-$NO_x$ system the Lean $NO_x$ Trap (LNT) catalyst is used, which absorbs $NO_x$ under lean exhaust gas conditions and releases it in rich conditions. This technology can provide a high $NO_x$-conversion efficiency, but the right amount of reducing agent should be supplied to the catalytic converter at the right time. In this research, the emission characteristics of a diesel engine equipped with a micro-reformer that acts as a reductants-supplying equipment were investigated using an LNT system, and the effects of the exhaust-gas temperature were also studied.

Preliminary Performance Assessment of a Fuel-Cell Powered Hypersonic Airbreathing Magjet

  • Bernard Parent;Jeung, In-Seuck
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.703-712
    • /
    • 2004
  • A variant of the magnetoplasma jet engine (magjet) is here proposed for airbreathing flight in the hypersonic regime. As shown in Figure 1, the engine consists of two distinct ducts: the high-speed duct, in which power is added electromagnetically to the incoming air by a momentum addition device, and the fuel cell duct in which the flow stagnation temperature is reduced by extracting energy through the use of a magnetoplas-madynamic (MPD) generator. The power generated is then used to accelerate the flow exiting the fuel cells with a fraction bypassed to the high-speed duct. The analysis is performed using a quasi one-dimensional model neglecting the Hall and ion slip effects, and fix-ing the fuel cell efficiency to 0.6. Results obtained show that the specific impulse of the magjet is at least equal to and up to 3 times the one of a turbojet, ram-jet, or scramjet in their respective flight Mach number range. Should the air stagnation temperature in the fuel cell compartment not exceed 5 times the incoming air static temperature, the maximal flight Mach number possible would vary between 6.5 and 15 for a magnitude of the ratio between the Joule heating and the work interaction in the MPD generator varied between 0.25 and 0.01, respectively. Increasing the mass flow rate ratio between the high speed and fuel cell ducts from 0.2 to 20 increases the engine efficiency by as much as 3 times in the lower supersonic range, while resulting in a less than 10% increase for a flight Mach number exceeding 8.

  • PDF

Study on the Heat Flux Using Instantaneous Temperature as Height of Probe in the Combustion Chamber (연손실 순간온도 측저에 있어서 돌출높이에 따른 실험적 연구)

  • 이치우;김지훈;김시범
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.395-402
    • /
    • 2001
  • The gasoline engine tends to high performance, fuel economy, small-sized. Therefore, it is necessary to solve the problems on thermal load, abnormal combustion, etc, in the engine, Thine film instantaneous temperature measurement probe was made. And the manufactural method of probe was established. The instantaneous surface temperatures in the constant volume combustion chamber were measured by this probe and the heat flux was obtained by Fourier analysis. The authors measured the wall temperature of combustion chamber and computed the heat flux through the cylinder wall in order to understand the combustion characteristics depending on height of probe. For achieving this goal, the thin film instantaneous temperature probe was developed for analyzing the instantaneous surface wall temperature and unsteady heat flux on the constant volume combustion chamber.

  • PDF

A Study of Heat Flux and Instantaneous Temperature According to the Equivalence Ratio in a Constant Volume Combustion Chamber (정적 연소기에서 당량비 변화에 따른 순간열유속에 관한 연구)

  • 이치우
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.624-632
    • /
    • 2003
  • In the gasoline engine industry. there has been a trend towards the development of high performance engines with improved fuel efficiency, reduced weight and smaller sizes. These trends help to solved engine problems related to thermal load and abnormal combustion. In order to investigate these Problems, a thin film-type probe for instantaneously measuring temperatures has been suggested. A method for manufacturing such a probe was established in this study. The instantaneous surface temperature of a constant volume combustion chamber was measured by this probe and the heat flux was obtained through Fourier analysis. A peak instantaneous temperature was obtained after 55∼60 ms from ignition and the temperature increased according to an equivalence ratio and varied differently according to the position of the probe. Total heat loss during combustion period was affected by the equivalence ratio and differed widely in accordance to the position of the probe.

A Study on the Development of an Engine Monitoring System for Small Vessel Using CSMA/CD (CSMA/CD 프로토콜을 이용한 중.소형 선박용 기관 모니터링 시스템 구성에 관한 연구)

  • 신명철;고두석;윤경국;안병원;김윤식
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.2
    • /
    • pp.455-463
    • /
    • 1999
  • This study is on the development of an engine monitoring system which can be applied not only for mid-size vessels but also small vessels less than 20 gross tonnage. Monitoring system consists of a set LMU(Local Monitoring Unit) that collect data from local machinery, a host computer that controls LMU and a stable communication system which adopts CSMA/CD protocol. The LMU is composed of 80C196KC microprocessor, which consists of CPU, digital input/output, analog input/output and communication module. Communication system between the host computer(compatible IBM PC) and LMUs is the multidrop configuration using RS-485 method and confirmed high performance communication by the aid of polling method as well as carrier sense multiple access with collision detection(CSMA/CD) protocol.

  • PDF

A study on the design of the torsional vibration viscous damper for the crankshaft and developing of its performance simulation computer program (크랭크축 비틀림진동점성댐퍼의 설계와 댐퍼 성능시뮬레이션프로그램개발)

  • 이충기;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.77-96
    • /
    • 1989
  • In diesel engines, it is inevitable that the torsional vibration is produced by the fluctuation of engine torque. Therefore, if the occurence of torsional vibration is confirmed in the design stage or the torsional vibration is observed on the bed of test run, it is necessary to establish some preventive measures to avoid dangerous conditions. Major preventive measures are as follows : 1. Changing the natural frequency of shaft system. 2. Repressing the vibration amplitude by the damping energy. 3. Counterbalancing the exciting torque by the resistant torque. 4. Counterbalacing the harmonic component of exciting energy. In above methos, the damper is the last measure to be used for controlling the torsional vibration. In this thesis, the design of viscous damper that absorbs the exciting energy is investigated and a number of problems associated with the design of viscous damper are treated and a computer pregram for the process of damper design is developed. A viscous damper for a high speed diesel engine is designed and its effect is simulated by the author's computer program.

  • PDF

Development of Piston-Ring Assembly Friction Force Measuring System (피스톤-링 결합체 마찰력 측정시스템의 개발)

  • 윤정의;김승수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.3
    • /
    • pp.94-104
    • /
    • 1994
  • In order to improve engine performance and its reliability it is very important to find the friction force between piston-ring assembly and cylinder wall in engine operating conditions. A new system was developed for the piston-ring assembly friction force measurement. This system had a relatively high fundamental frequency at 884 Hz and a fine resolution of 0.5N in friction force measurement. Comparing with existing floating liner systems this systems required small installation space and at the same time alleviated the system noise problem induced by the thrust and slap impulse forces.

  • PDF

Discussions on the Combustion Dynamics of RDE with Relevance to the Liquid Rocket Combustion Instability (RDE의 연소동역학 및 액체 로켓 연소 불안정과 연관성에 대한 고찰)

  • Choi, Jeong-Yeol
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.363-366
    • /
    • 2012
  • Detonative combustion is considered as a promising combustion mechanism for improving thermodynamic efficiency of power generation systems as a PGC, as well as high-speed propulsion systems. Among the various types of detonative combustion, RDE is fascinated by many researchers because of the simplicity and continuos operation characteristics. Present paper is an introduction to the physical and operational concept of RDE with a brief history of RDE researches and recent development activities. Additional discussions will devoted to the relevance to the tangential mode instabilities in liquid rocket engines and improvement of liquid rocket performance.

  • PDF