• Title/Summary/Keyword: High performance QoS

Search Result 268, Processing Time 0.026 seconds

Adaptive Resource Provisioning Method that provide Rapid Scalability and High Performance for Seamless I/O Intensive Application Service in Cloud Environment (클라우드 환경에서 Seamless한 서비스 제공을 위한 빠른 확장성과 성능을 제공하는 적응형 자원 프로비저닝 기법)

  • Yoo, Seung Hwan;Hong, Yo Hoon;Kim, Sung Chun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.11a
    • /
    • pp.41-44
    • /
    • 2014
  • 최근 클라우드 컴퓨팅에 관련된 기술이 각광을 받으면서, 기존에 인터넷을 통해 제공되던 다양한 서비스들이 클라우드 컴퓨팅 플랫폼 환경으로 이동하고 있다. 이를 통해 사용자들에게는 좀 더 편리하고 유연한 서비스를 제공하고 서비스 제공자들에게는 기존 관리 비용의 절감을 할 수 있게 되었다. 하지만 현재 폭발적인 수요의 증가로 인해, 기존의 자원 활용도의 극대화를 목적으로 고안된 자원 분배 기법들에 대한 여러 한계점이 나타나게 되었다. 본 논문에서는 이러한 문제점들을 해결하고자 클라우드 컴퓨팅 환경에서 Qos를 기반으로 사용자나 서비스 제공자의 비용적인 측면을 고려한 자원분배를 통해 서비스를 제공시 사용자 요구를 만족시키고 동시에 서비스 공급자에게는 비용 효율적인 프로비저닝(Provisioning)기법을 제안하고자 한다. 실험 결과 기존의 자원 활용도에 중점을 둔 기법보다 사용자 요청에 대한 응답 속도가 8.35% 향상되었으며, 컴퓨터 자원 유지 관련 비용면에서도 기존 대비 11.31% 절감 효과를 가져오는 것을 확인 할 수 있었다.

Efficient Resource Slicing Scheme for Optimizing Federated Learning Communications in Software-Defined IoT Networks

  • Tam, Prohim;Math, Sa;Kim, Seokhoon
    • Journal of Internet Computing and Services
    • /
    • v.22 no.5
    • /
    • pp.27-33
    • /
    • 2021
  • With the broad adoption of the Internet of Things (IoT) in a variety of scenarios and application services, management and orchestration entities require upgrading the traditional architecture and develop intelligent models with ultra-reliable methods. In a heterogeneous network environment, mission-critical IoT applications are significant to consider. With erroneous priorities and high failure rates, catastrophic losses in terms of human lives, great business assets, and privacy leakage will occur in emergent scenarios. In this paper, an efficient resource slicing scheme for optimizing federated learning in software-defined IoT (SDIoT) is proposed. The decentralized support vector regression (SVR) based controllers predict the IoT slices via packet inspection data during peak hour central congestion to achieve a time-sensitive condition. In off-peak hour intervals, a centralized deep neural networks (DNN) model is used within computation-intensive aspects on fine-grained slicing and remodified decentralized controller outputs. With known slice and prioritization, federated learning communications iteratively process through the adjusted resources by virtual network functions forwarding graph (VNFFG) descriptor set up in software-defined networking (SDN) and network functions virtualization (NFV) enabled architecture. To demonstrate the theoretical approach, Mininet emulator was conducted to evaluate between reference and proposed schemes by capturing the key Quality of Service (QoS) performance metrics.

Capacity Analysis of Internet Protocol Television (IPTV) over IEEE 802.11ac Wireless Local Area Networks (WLANs)

  • Virdi, Chander Kant;Shah, Zawar;Levula, Andrew;Ullah, Imdad
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.327-333
    • /
    • 2022
  • Internet Protocol Television (IPTV) has emerged as a personal entertainment source for home users. Streaming IPTV content over a wireless medium with good Quality of Service (QoS) can be a challenging task as IPTV content requires more bandwidth and Wireless Local Area Networks (WLANs) are susceptible to packet loss, delay and jitter. This research presents the capacity of IPTV using User Datagram Protocol (UDP) and TCP Friendly Rate Control (TFRC) over IEEE 802.11ac WLANs in good and bad network conditions. Experimental results show that in good network conditions, UDP and TFRC could accommodate a maximum of 78 and 75 Standard Definition Television (SDTV) users, respectively. In contrast, 15 and 11 High-Definition Television (HDTV) users were supported by UDP and TFRC, respectively. Performance of UDP and TFRC was identical in bad network conditions and same number of SDTV and HDTV users were supported by TFRC and UDP. With background Transmission Control Protocol (TCP) traffic, both UDP and TFRC can support nearly the same number of SDTV users. It was found that TFRC can co-exist fairly with TCP by giving more throughput to TCP unlike UDP.

A Study on Service Quality Diagnosis Techniques for LTE/5G Network Backhaul (LTE/5G 네트워크 백홀(Backhaul)의 서비스 품질진단 기법에 관한 연구)

  • Ji-Hyun Yoo
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.617-623
    • /
    • 2023
  • With the evolution of communication networks, there is a growing demand for stable high-speed data connections to support services relying on large-capacity data. The increasing volume of packet data aggregated from user devices underscores the significance of quality diagnostics for the backhaul network, an intermediate link transmitting data to the core network. This paper conducts empirical research on techniques to diagnose issues within the backhaul network through practical case studies, through diagnosing various factors such as circuit bandwidth, speed disparities within switches, network segment-specific buffer sizes, routing policies, among other factors that could potentially cause RTT (Round Trip Time) delays and performance degradation.

Handover in LTE networks with proactive multiple preparation approach and adaptive parameters using fuzzy logic control

  • Hussein, Yaseein Soubhi;Ali, Borhanuddin M;Rasid, Mohd Fadlee A.;Sali, Aduwati
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2389-2413
    • /
    • 2015
  • High data rates in long-term evolution (LTE) networks can affect the mobility of networks and their performance. The speed and motion of user equipment (UE) can compromise seamless connectivity. However, a proper handover (HO) decision can maintain quality of service (QoS) and increase system throughput. While this may lead to an increase in complexity and operational costs, self-optimization can enhance network performance by improving resource utilization and user experience and by reducing operational and capital expenditure. In this study, we propose the self-optimization of HO parameters based on fuzzy logic control (FLC) and multiple preparation (MP), which we name FuzAMP. Fuzzy logic control can be used to control self-optimized HO parameters, such as the HO margin and time-to-trigger (TTT) based on multiple criteria, viz HO ping pong (HOPP), HO failure (HOF) and UE speeds. A MP approach is adopted to overcome the hard HO (HHO) drawbacks, such as the large delay and unreliable procedures caused by the break-before-make process. The results of this study show that the proposed method significantly reduces HOF, HOPP, and packet loss ratio (PLR) at various UE speeds compared to the HHO and the enhanced weighted performance HO parameter optimization (EWPHPO) algorithms.

Satellite On-board ATM Switch Based on Knockout Switch (Knockout 스위치를 기반으로 한 위성 On-board ATM 스위치 구조 연구)

  • 김진상;박영근
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.11C
    • /
    • pp.113-122
    • /
    • 2001
  • Several guidelines can be developed for a satellite-based ATM switch. One of the most important of these is that the switch must provide a requirement for CLRs on the order of 10-10 to meet the QoS of high- performance traffic and avoid costly retransmissions. In this paper, the proposed approach shows not only the better traffic performance but also requires the little switching elements and buffers compared with original Knockout switch and other scheduling algorithm. As a result, the complexity becomes reduced. Simulation results indicate that proposed approach shows excellent cell loss ratio compared with existing switch architecture. Also, iii performance can be approached to the cell loss ratio, which is requirement for the satellite system, as window size increases. An(1 it shows thats low complexity is induced. Therefore, the proposed approach is appropriate for satellite on-board ATM switch architecture.

  • PDF

SIP6 supporting the Differentiated Call Processing Scheme (차별화된 호 처리 기법을 지원하는 SIP6)

  • 김진철;최병욱;장천현;김기천;한선영
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.5
    • /
    • pp.621-630
    • /
    • 2003
  • In this paper, we implemented SIP protocol that supports IPv6 and differentiated call processing scheme for NGN(Next Regeneration Network). In NGN, SIP processes call signaling among various application services. A softswitch and SIP server must give priority to sensitive services such as Fax, network management and home networking that require a fast call setup time. Also, the support of IPv6 is needed under consideration of All-IP. We proposed differentiated call processing scheme. The differentiated call processing scheme supports differentiated call processing as priority of service class on call processing in SW server We defined three service classes and use the Flow Label field of the IPv6 header for setting service class. Through the performance analysis, we proved that it improves throughput for call message with the high priority. The result of performance analysis demonstrates that differentiated call processing scheme gives better performance for the service requiring a fast session establishment in NGN.

A Study on Packet Scheduling for LTE Multimedia Data (LTE 멀티미디어 데이터를 위한 패킷 스케쥴링 알고리즘에 관한 연구)

  • Le, Thanh Tuan;Yoo, Dae-Seung;Kim, Hyung-Joo;Jin, Gwang-Ja;Jang, Byung-Tae;Ro, Soong-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.8B
    • /
    • pp.613-619
    • /
    • 2012
  • The Long Term Evolution (LTE) system is already able to provide a background of variety services for mobile users with multimedia services such as audio, video, and data. In fact, the High Speed Packet Access plus (HSPA+) solution can greatly enhance bit rates on down-link. However, the supporting for multimedia applications with different QoS (Quality of Service) requirements is not devised yet. Hence, in this paper we propose an effective packet scheduling algorithm based on Proportional Fairness (PF) scheduling algorithms for the LTE. In this proposed packet scheduling scheme, we optimized instantaneous user data rates and the traffic class weight which prioritize user's packets. Finally, we evaluated and showed the performance of the proposed scheduling algorithm through simulations of multimedia traffics being transmitted to users over LTE links in a multi-cell environment.

Active VM Consolidation for Cloud Data Centers under Energy Saving Approach

  • Saxena, Shailesh;Khan, Mohammad Zubair;Singh, Ravendra;Noorwali, Abdulfattah
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.11
    • /
    • pp.345-353
    • /
    • 2021
  • Cloud computing represent a new era of computing that's forms through the combination of service-oriented architecture (SOA), Internet and grid computing with virtualization technology. Virtualization is a concept through which every cloud is enable to provide on-demand services to the users. Most IT service provider adopt cloud based services for their users to meet the high demand of computation, as it is most flexible, reliable and scalable technology. Energy based performance tradeoff become the main challenge in cloud computing, as its acceptance and popularity increases day by day. Cloud data centers required a huge amount of power supply to the virtualization of servers for maintain on- demand high computing. High power demand increase the energy cost of service providers as well as it also harm the environment through the emission of CO2. An optimization of cloud computing based on energy-performance tradeoff is required to obtain the balance between energy saving and QoS (quality of services) policies of cloud. A study about power usage of resources in cloud data centers based on workload assign to them, says that an idle server consume near about 50% of its peak utilization power [1]. Therefore, more number of underutilized servers in any cloud data center is responsible to reduce the energy performance tradeoff. To handle this issue, a lots of research proposed as energy efficient algorithms for minimize the consumption of energy and also maintain the SLA (service level agreement) at a satisfactory level. VM (virtual machine) consolidation is one such technique that ensured about the balance of energy based SLA. In the scope of this paper, we explore reinforcement with fuzzy logic (RFL) for VM consolidation to achieve energy based SLA. In this proposed RFL based active VM consolidation, the primary objective is to manage physical server (PS) nodes in order to avoid over-utilized and under-utilized, and to optimize the placement of VMs. A dynamic threshold (based on RFL) is proposed for over-utilized PS detection. For over-utilized PS, a VM selection policy based on fuzzy logic is proposed, which selects VM for migration to maintain the balance of SLA. Additionally, it incorporate VM placement policy through categorization of non-overutilized servers as- balanced, under-utilized and critical. CloudSim toolkit is used to simulate the proposed work on real-world work load traces of CoMon Project define by PlanetLab. Simulation results shows that the proposed policies is most energy efficient compared to others in terms of reduction in both electricity usage and SLA violation.

Node Architecture and Cell Routing Strategies for ATM Applications in WDM Multihop Networks (WDM 다중홉 망에서 ATM 응용을 위한 노드 구조 및 셀 라우팅 기법)

  • Lee, Ho-Suk;Lee, Cheong-Hun;So, Won-Ho;Kwon Hyeok-Jung;Kim, Yeong-Cheon
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.11
    • /
    • pp.44-52
    • /
    • 1998
  • In this paper, we proposed a node architecture and cell routing strategies for ATM applications in WDM multihop networks. The proposed node architecture employs the optical delay loop for storing the cell which is failed in out-link contention. This optical delay loop allows the delay of one cell without the electro-optic conversion. Therefore, we can get the advantages of S&F(Store-and-Forward) routing in Deflection-based all-optical networks. To support the ATM applications efficiently. we considered the transmission priority of ATM cell so that high priority cell can be transmitted with lower loss and shorter delay than low priority one. Two kinds of routing strategies are designed for this architecture: Scheme-Ⅰand Scheme-Ⅱ. Scheme-Ⅰapplies S&F routing to high cell and Deflection routing to low cell, i.e., high cells are routed along the shortest path based on S&F routing, but low cells are deflected or lost. Schem-Ⅱ is similar to Scheme-Ⅰexcept that low cells can occupy the optical loop if it is available. This Scheme-Ⅱ increases the utilization of network resources without decreasing the throughput of high cell by reducing the low cell loss rate when traffic load is low. Simulation results show that our routing strategies have better performance than conventional ones under non-uniform traffic as well as uniform traffic.

  • PDF