• 제목/요약/키워드: High organic wastewater

검색결과 441건 처리시간 0.024초

고도(高度) 하수처리(下水處理) 시스템의 처리성능 및 경제성 평가에 관한 연구 (Evaluation of Performance and Economical Efficiency of the Advanced Wastewater Treatment System)

  • 김동하
    • 상하수도학회지
    • /
    • 제13권1호
    • /
    • pp.61-71
    • /
    • 1999
  • For a high-rate fermentation and recovery of organic acid, we have developed a new organic acid fermentation reactor with membrane filter, which is the most important part in the new advanced wastewater treatment system. The recovered organic acid is to be reused as an organic carbon source at denitrification process. Some experiments were conducted to compare the performance of acid fermentation at different SRTs, such as 5, 10, and 20 days. The total organic acid concentration produced during the runs was in the range of 2,100-2,900 (mgC/L). The conversion efficiency from substrate to organic acid reached to from 43% to 59%. The recovery rate of organic acid from substrate based on TOC was from 26% to 53%. Regardless of operational conditions, it has been able to maintain the membrane flux constantly, in the range of 0.4-0.46 ($m^3/m^2/day$). The transmembrane pressure drop was 0.2-0.3 (kg/cm) for 100 day's operation. The result of simulation is as follows. Organic removal efficiency of the new advanced treatment system is 95%. 73% of Nitrogen is removed. The removal efficiency of Phosphorus is 93%. By coqulation, soluble phosphorus is able to remove from the water treatment lines, which is impossible at conventional activated sludge system. The unit construction cost is 65000 (yen/m3) and it was 1.4 times than that of the standard activated sludge system. The unit operation cast is 7.7 ($yen/m^3/day$) and it was 1.3 times than that of the standard activated sludge system.

  • PDF

고효율 자외선/광촉매 시스템을 이용만 고농도 유기성 폐수처리 (Treatment of highly concentrated organic wastewater by high efficiency $UV/TiO_{2}$ photocatalytic system)

  • 김중곤;정효기;손주영;김시욱
    • KSBB Journal
    • /
    • 제23권1호
    • /
    • pp.83-89
    • /
    • 2008
  • 음식물쓰레기를 처리하기 위한 3단계 메탄발효시스템으로부터 유출되는 음식물 발효 폐액은 고농도 유기성 폐수이다. 유기성 폐수는 고도처리 시스템에 의해 방류기준에 적합하게 처리되어져야만 한다. 본 연구에서는 유기성 폐수를 처리하기 위해 고효율 $UV/TiO_{2}$ 광촉매 산화공정의 최적 운전 조건을 조사하였다. 첫 번째 공정에서 폐수에 응집제인 $FeCl_{3}$를 전처리 하였으며, 응집을 위한 최적 pH와 응집제의 농도는 각각 pH 4와 2000 mg/L이었다. 이 공정을 통하여 최대 52.6%의 COD가 제거되었다. 두 번째는 $UV/TiO_{2}$ 광촉매 산화공정으로, 최적 운전 조건은 중심파장이 254 nm, 폐수 온도 및 pH가 각각 $40^{\circ}C$와 pH 8, 반응기 주입 공기량이 40 L/min인 것으로 조사되었다. 응집제를 이용한 전처리 공정과 광촉매 산화공정을 병합하여 최적조건에서 폐수를 처리할 경우 T-N과 COD의 제거율은 각각 69.7%와 70.9% 이었다.

E-PER 반응기를 이용한 유기성 폐기물의 혐기성 처리와 재생에너지 생산에 관한 연구 (Anaerobic Organic Wastewater Treatment and Energy Regeneration by Utilizing E-PFR System)

  • 김범식;최홍복;이재기;박주형;지덕기;최은주
    • 유기물자원화
    • /
    • 제16권2호
    • /
    • pp.57-65
    • /
    • 2008
  • 일반적 중 저농도형 하수처리시설을 통해서는 처리가 힘든 고농도 유기성 폐수의 경우 재생에너지 생산이 가능한 혐기성 분해로 처리하는 것이 유리하다. 기존 호기성 처리에서 이미 그 실용성과 우수성이 입증된 E-PFR을 혐기성 처리에 적용하여 그 효용성과 재생에너지 생산 효율 증대 효과 등을 검증하고, 효율적인 재생에너지 생산을 위한 조건 등을 제시하기 위한 연구를 수행하였다. N 음식물쓰레기 처리시설에서 발생하는 탈리액을 대상으로 수행한 Pilot Plant 규모의 실험 연구에서 반응기의 구조적 특성으로 인해 혐기성 분해의 효율 향상 및 메탄가스 발생량이 증가함을 확인하였다. 이러한 처리 효율의 향상은 유체 이동관과 각단을 분리하는 격벽을 설치한 E-PFR의 구조적 특성에 기인한 원활한 혼합조건 형성과 스컴제어로 혐기성 처리에 있어서도 매우 이상적인 반응 조건을 형성시키기가 용이하였기 때문이다. E-PFR은 상향류식 폐수 유입과 각 단별로 분리된 다단형 처리로 인해 폐수 유입 구역에는 상대적으로 높은 MLSS가 유지될 수 있으므로 충격부하에 대한 내성이 강하고, 전체적으로 혐기성 최적 pH인 7.0~8.0 정도를 유지하여 상대적으로 높은 가스 발생량 및 메탄가스 함량을 유지하는 것이 가능하였다. 뿐만 아니라, 각 단별로 각기 다른 MLSS를 유지시키면서 SRT를 상대적으로 길게 유지함으로써 유기물 분해 및 가스 발생 효율을 증가시키는 효과가 있었다. 향후, 반응기의 구조적 개선과 발생가스를 이용한 교반 효과 개선 등을 통해 메탄가스 함량 70 % 수준의 안정적 혐기성 분해가 가능한 실증 플랜트 설계가 가능할 것으로 판단되며, 이를 통해 한층 향상된 재생에너지 획득 시스템 확보가 가능할 것이다.

  • PDF

주정폐수 처리를 위한 SBR 운전주기에 관한 연구 (A Study on Operation Cycle of SBR for the Treatment of Distillery Wastewater)

  • 최유현;엄한기;김성철;주현종
    • 한국물환경학회지
    • /
    • 제32권2호
    • /
    • pp.191-196
    • /
    • 2016
  • This study aimed to evaluate SBR operation cycle for removing the high-concentration organic matter of distillery wastewater in the ginseng processing plant. The experiment was conducted with the use of a laboratory scale SBR reactor and distillery wastewater as the influent. The results indicated an increase in pH from 4.08 to 7.59 of distillery wastewater after aeration for 2 hours. Also, the optimum SBR operation cycle for the removal of organic matter and nitrogen was 2 hr of aeration and 6 hr of anaerobic conditions. Adjustment of proper pH through aeration time is most critical in the SBR operation for distillery wastewater treatment. In this study, we presented an efficient method for distillery wastewater treatment.

이상혐기공정의 축산폐수 공공처리시설 적용 가능성에 관한 실험적 연구 (A Study on the Evaluation of Two-Phase Anaerobic Process for Public Livestock Wastewater Treatment Plant)

  • 오성모;김문호;배윤선;박철휘
    • 상하수도학회지
    • /
    • 제21권3호
    • /
    • pp.331-339
    • /
    • 2007
  • The purpose of this study was to investigate the biodegradability and performance of organic removal and methane production rate when treating piggery wastewater using a pilot scale two-phase anaerobic system operated up to a volumetric rate of $10m^3/day$. The pilot scale two-phase anaerobic process is consisted of a continuous-flow stirred-tank reactor (CFSTR) for the acidification phase and an Upflow Anaerobic Sludge Blanket reactor (UASB) for the methanogenesis. The acidogenic reactor played key roles in reducing the periodically applied shock-loading and in the acidification of the influent organics. The acidogenic CFSTR was operated at organic loading rates (OLR) between 1.8 and $14.4kgCOD/m^3{\cdot}day$, and the UASB reactor was operated between 0.5 and $5.6kgCOD/m^3{\cdot}day$. A stable maximum biogas production rate was $81m^3/day$ and the methane conversion rate of the organic matter varied from 0.30 to $0.42L\;CH_4/g\;COD_{removed}$(0.40) at hydraulic retention time (HRT) above 3.5days. The methane contents ranged from 73 to 82% during the experimental period. It is known that most of the removed organic matter was converted to methane gas, and the produced biogas might be high quality for its subsequent use.

호기성 침지형 생물막 여과장치를 이용한 오수처리 (Sewage Treatment using Aerated Submerged Biological Filter(ASBF))

  • 박종웅;송주석
    • 한국물환경학회지
    • /
    • 제16권4호
    • /
    • pp.523-532
    • /
    • 2000
  • The purpose of this study was to investigate the effects of the hydraulic retention time (HRT) and organic loading rate (OLR) on microbial characteristics and treatment efficiency in sewage treatment using aerated submerged biological filter (ASBF) reactor. This reactor combines biodegradation of organic substrates by fixed biomass with a physical separation of biomass by filtration in a single reactor. Both simulated wastewater and domestic wastewater were used as feed solutions. The experimental conditions were a temperature of 17 to $27^{\circ}C$, a hydraulic retention time of 1 to 9hr, an organic loading rate of 0.47 to $3.84kg\;BOD/m^3{\cdot}day$ in ASBF reactor. This equipment could obtain a stable effluent quality in spite of high variation of influent loading rate. Total biomass concentration. biofilm thickness and biofilm mass increased an exponential function according to the increasing OLR. The relationships between water content and biofilm density were in inverse proportion. The percentage of backwash water to influent flow was almost 9%. The separation efficiency of biomass was the percentage of 91 to 92 in ASBF reactor. The sludge production rates in feed solutions of simulated wastewater and domestic wastewater were 0.14~0.26 kg VSS/kg BODrem, 0.43~0.48 kg VSS/kg BODrem, respectively.

  • PDF

Conversion of Organic Carbon in Food Processing Wastewater to Photosynthetic Biomass in Photo-bioreactors Using Different Light Sources

  • Suwan, Duangkamon;Chitapornpan, Sukhuma;Honda, Ryo;Chiemchaisri, Wilai;Chiemchaisri, Chart
    • Environmental Engineering Research
    • /
    • 제19권3호
    • /
    • pp.293-298
    • /
    • 2014
  • An anaerobic photosynthetic treatment process utilizing purple non-sulfur photosynthetic bacteria (PNSB) was applied to the recovery of organic carbon from food processing wastewater. PNSB cells, by-product from the treatment, have high nutrition such as proteins and vitamins which are a good alternative for fish feed. Effects of light source on performance of anaerobic photosynthetic process were investigated in this study. Two bench-scale photo-bioreactors were lighted with infrared light emitting diodes (LEDs) and tungsten lamps covered with infrared transmitting filter, respectively, aiming to supply infrared light for photosynthetic bacteria growth. The photo-bioreactors were operated to treat noodle-processing wastewater for 323 days. Hydraulic retention time (HRT) was set as 6 days. Organic removals in the photo-bioreactor lighted with infrared LEDs (91%-95%) was found higher than those in photo-bioreactor with tungsten lamps with filter (79%-83%). Biomass production in a 150 L bench-scale photo-bioreactor was comparable to a 8 L small-scale photo-bioreactor in previous study, due to improvement of light supply efficiency. Application of infrared LEDs could achieve higher treatment performance with advantages in energy efficiency and wavelength specifity.

활성슬러지법에 의한 고농도 중화학공장 폐수처리에 관한 연구 (Bench-Scale Evaluation of the Activated Sludge Process for Treatment of a High-Strength Chemical Plant Wastewater)

  • 조영하
    • 한국환경보건학회지
    • /
    • 제19권3호
    • /
    • pp.1-16
    • /
    • 1993
  • This paper describes an investigation to determine whether the activated sludge (AS) process could be used for the treatment of wastewater at the Union Carbide Coporation (UCC) plant in Seadrift, Texas. This plant presently utilizes a waste stabilization pond (WSP) system for treatment of the wastewater. The treatment system consists of an in-plant primary WSP and two off-plant WSPs (secondary and tertiary WSPs), run in series. The total hydraulic detention time of the WSP system is approximately 150 days. Several laboratory-based treatability studies have been conducted to evaluate the performace of the WSP system and the degradability of specific chemical compounds. From an additional study, it was determined that the WSP system was stressed and occasionally operating near the limit of its treatment capacity. The existing primary WSP plays an important role in the overall treatmemt system, because it not only functions as a pH and organic-strength equalization basin, but also serves as a "preconditioning" basin by fermenting high strength organic wastes to volatile organic acids for subsequent degradation in the escondary WSP. However, in view of pending RCRA legislatin conerning the "proposed organic toxicity characteristics limits" (40 CFR Part261: Federal Register, July, 1988), it is possible that the primary WSP will have to be abandoned in favor of alternative treatment options. Therefore the main purpose of this study was to perform activated sludge treatability evaluations for the development of an alternative to the existing primary WSP treatment ststem. In addition, another purpose was to determine the degradability of bis(2-chloroethyl)ether (Chlorex or CX) and benzene(BZ) in the activated sludge process. The presence of these two chemicals in the wastewater of the plant prompted the question of whatedether they could be degraded in an activated sludge system.

  • PDF

하폐수처리에서 질소 제거를 위한 미생물 전기화학 기술의 동향 (Trends of microbial electrochemical technologies for nitrogen removal in wastewater treatment)

  • 채형원;최용훈;김명운;김영진;정석희
    • 상하수도학회지
    • /
    • 제34권5호
    • /
    • pp.345-356
    • /
    • 2020
  • The removal of organic carbon and nutrients (i.e. N and P) from wastewater is essential for the protection of the water environment. Especially, nitrogen compounds cause eutrophication in the water environment, resulting in bad water quality. Conventional nitrogen removal systems require high aeration costs and additional organic carbon. Microbial electrochemical system (MES) is a sustainable environmental system that treats wastewater and produces energy or valuable chemicals by using microbial electrochemical reaction. Innovative and cost-effective nitrogen removal is feasible by using MESs and increasing attention has been given to the MES development. In this review, recent trends of MESs for nitrogen removal and their mechanism were conclusively reviewed and future research outlooks were also introduced.

하·폐수처리시설 방류수내 유기물질 및 NOD 분포 특성 (Distribution of Organic Matter and Nitrogenous Oxygen Demand in Effluent of Sewage and Wastewater Treatment Plants)

  • 김호섭;김석규
    • 한국물환경학회지
    • /
    • 제37권1호
    • /
    • pp.20-31
    • /
    • 2021
  • In this study, an analysis of the characteristics of organic matter and nitrogenous oxygen demand (NOD) of 17 sewage effluent and wastewater treatments was conducted. High CODMn and carbonaceous biological oxygen demand (CBOD) concentrations were observed in the livestock treatment plants (LTP), wastewater treatment plants(WTP), and night soil treatment plants (NTP), but the highest NOD concentration and contribution rates of NOD to BOD5 were found in sewage treatment plants (STP). There was no significant difference in the CBOD/CODMn ratio for each of the six pollution source groups, but the LTPs, WTPs, and NTPs all showed relatively high CODMn concentrations in their effluent samples, indicating that they are facilities which discharge large amounts of refractory organic matter. The seasonal change of NOD in all facilities' effluent was found to be larger than the seasonal change of CBOD, and data results also revealed an elevation of NOD and NH3-N concentration from December to February, when the water temperature was low. There was no significant difference in NH3-N concentration in relation to pollution source group (p=0.08, one-way ANOVA), but the STP, which had a high NOD contribution rate to BOD5 of 48%, showed a high correlation between BOD5 and NOD (r2=0.95, p<0.0001). These results suggest that the effect of NOD on BOD5 is an important factor to be considered when analyzing STP effluent.