• 제목/요약/키워드: High moisture

검색결과 2,682건 처리시간 0.031초

고수분탄의 건조에 따른 미연분 및 NOx 배출 특성에 관한 연구 (Study on the Unburned Carbon and NOx emission of High Moisture Coal)

  • 안석기;김정우;김규보;이시훈;전충환
    • 에너지공학
    • /
    • 제25권4호
    • /
    • pp.53-61
    • /
    • 2016
  • 본 연구에서는 Drop Tube Furnace(DTF)를 이용하여 고수분탄과 건조석탄의 미연분 및 NOx 배출 특성에 관한 실험과 수치해석 연구를 수행하였다. $1200^{\circ}C$ 온도조건에서 동일한 질량의 고수분탄과 건조석탄의 연소 시, 건조석탄의 경우 고수분탄에 비해 노 내 온도가 더 높고 동일 체류시간 반응 후 미연분 함량도 더 많았으며, NOx 배출은 고수분탄에서 더 낮았다. 석탄 내 수분함량이 40%에서 10%로 감소함에 따라 노 내 수분 농도는 감소하고 가스온도는 증가하는 경향을 보였다. 주위 Wall temperature가 $900^{\circ}C{\sim}1500^{\circ}C$까지 높아질수록 미연분은 감소하였으며, NOx 배출은 증가하는 경향을 보였다. 특히 건조석탄의 경우 주위 온도변화에 따른 연소성이 고수분탄보다 크게 나타나, 온도가 증가할수록 고수분탄과 건조석탄의 미연분 차이가 감소하는 것을 확인할 수 있었다.

순환잔골재의 수분공급에 의한 고강도 콘크리트의 자기수축 저감 (Reduction of Autogenous Shrinkage of High-strength Concrete Based on Moisture Supply of Recycled Fine Aggregate)

  • 하정수;김한식;조현준;이영도
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 추계 학술논문 발표대회
    • /
    • pp.229-230
    • /
    • 2017
  • This study aims to achieve an enhancement in the quality of high strength concrete through a reduction in autogenous shrinkage by supplying the moisture needed for hydration through recycled aggregates that retain high amounts of moisture. The result showed that, moisture supply increased with the higher replacement rate, autogenous shrinkage dropped by up to 60 percent. Also, compressive strength was increased by up to 10 percent.

  • PDF

고온조건에서 콘크리트의 수분증발 해석기법 (Analytical Method for Moisture Vaporization of Concrete under High Temperature)

  • 이태규
    • 한국콘텐츠학회논문지
    • /
    • 제17권7호
    • /
    • pp.538-545
    • /
    • 2017
  • 콘크리트가 화재에 노출되면 콘크리트 표면에서의 수분뿐만 아니라 콘크리트 내부에서의 수분도 수분의 평형 및 전달조건에 의하여 증발이 발생된다. 수분의 평형조건은 재료의 자기이력거동으로 표현되는 물의 증발에 대한 수착등온선 관계로 설명된다. 본 논문은 화재시 콘크리트 내부의 수분변화를 예측하고자 하는 것으로 부재 내부의 임의의 위치에서의 상대함수율을 산정하기 위하여 유한요소방식을 적용하였다. 또한 고온에서 콘크리트의 수분확산 특성치에 대해서도 모델식을 제시하였다. 이러한 해석기법의 정확성을 검증하기 위하여 실험데이터와 비교하였으며, 그 결과 수분증발로 인하여 수분이 감소되는 효과를 포함한 전반적인 부재 내부의 수분이동현상이 실제 실험데이터와 거의 유사하게 나타나는 것으로 확인되었다.

Finite Difference Evaluation of Moisture Profile in Boxed-heart Large-cross-section Square Timber of Pinus densiflora during High Temperature Drying

  • Kim, Hyunbin;Han, Yeonjung;Park, Yonggun;Yang, Sang-Yun;Chung, Hyunwoo;Eom, Chang-Deuk;Lee, Hyun-Mi;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • 제45권6호
    • /
    • pp.762-771
    • /
    • 2017
  • Predicting the amount and distribution of moisture content within wood allows calculating the various mechanical dynamics of the wood as well as determining the drying time. For boxed-heart wood with a large cross-section, since it is difficult to measure the moisture content of the interior, it is necessary to predict the moisture content distribution. This study predicted the moisture movement in boxed-heart red pine timber, during high temperature drying, by using the three-dimensional finite difference method for the efficient drying process. During drying for 72 h, the predicted and actual moisture content of the tested wood tended to decrease at a similar rate. In contrast, the actual moisture content at 196 and 240 h was lower than predicted because surface checking of the wood occurred from 72 h and excessive water emission was unexpectedly occurred from the checked and splitted surface.

Sentinel-1A/B SAR 센서 기반 고해상도 토양수분 산정 (Estimation of High-Resolution Soil Moisture based on Sentinel-1A/B SAR Sensors)

  • 김상우;이태화;신용철
    • 한국농공학회논문집
    • /
    • 제61권5호
    • /
    • pp.89-99
    • /
    • 2019
  • In this study, we estimated the spatially-distributed soil moisture at the high resolution ($10m{\times}10m$) using the satellite-based Sentinel-1A/B SAR (Synthetic Aperture Radar) sensor images. The Sentinel-1A/B raw data were pre-processed using the SNAP (Sentinel Application Platform) tool provided from ESA (European Space Agency), and then the pre-processed data were converted to the backscatter coefficients. The regression equations were derived based on the relationships between the TDR (Time Domain Reflectometry)-based soil moisture measurements and the converted backscatter coefficients. The TDR measurements from the 51 RDA (Rural Development Administration) monitoring sites were used to derive the regression equations. Then, the soil moisture values were estimated using the derived regression equations with the input data of Sentinel-1A/B based backscatter coefficients. Overall, the soil moisture estimates showed the linear trends compared to the TDR measurements with the high Pearson's correlations (more than 0.7). The Sentinel-1A/B based soil moisture values matched well with the TDR measurements with various land surface conditions (bare soil, crop, forest, and urban), especially for bare soil (R: 0.885~0.910 and RMSE: 3.162~4.609). However, the Mandae-ri (forest) and Taean-eup (urban) sites showed the negative correlations with the TDR measurements. These uncertainties might be due to limitations of soil surface penetration depths of SAR sensors and complicated land surface conditions (artificial constructions near the TDR site) at urban regions. These results may infer that qualities of Sentinel-1A/B based soil moisture products are dependent on land surface conditions. Although uncertainties exist, the Sentinel-1A/B based high-resolution soil moisture products could be useful in various areas (hydrology, agriculture, drought, flood, wild fire, etc.).

Spatial Downscaling of AMSR2 Soil Moisture Content using Soil Texture and Field Measurements

  • Na, Sangil;Lee, Kyoungdo;Baek, Shinchul;Hong, Sukyoung
    • 한국토양비료학회지
    • /
    • 제48권6호
    • /
    • pp.571-581
    • /
    • 2015
  • Soil moisture content is generally accepted as an important factor to understand the process of crop growth and is the basis of earth system models for analysis and prediction of the crop condition. To continuously monitor soil moisture changes at kilometer scale, it is demanded to create high resolution data from the current, several tens of kilometers. In this paper we described a downscaling method for Advanced Microwave Scanning Radiometer 2 (AMSR2) Soil Moisture Content (SMC) from 10 km to 30 m resolution using a soil texture and field measurements that have a high correlation with the SMC. As a result, the soil moisture variations of both data (before and after downscaling) were identical, and the Root Mean Square Error (RMSE) of SMC exhibited the low values. Also, time series analyses showed that three kinds of SMC data (field measurement, original AMSR2, and downscaled AMSR2) had very similar temporal variations. Our method can be applied to downscaling of other soil variables and can contribute to monitoring small-scale changes of soil moisture by providing high resolution data.

중량함수율 및 상대함수율 비교에 따른 정량적인 함수율 산정에 대한 실험적 연구 (Experimental Research on the Comparison of Gravity Moisture Content and Relative Moisture Content in Calculating the Quantitative Percentage of Moisture Content)

  • 변용현;류동우
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 춘계 학술논문 발표대회
    • /
    • pp.134-135
    • /
    • 2016
  • This study aims to compare relative moisture content and gravity moisture content in calculating the rational percentage of moisture content. High-strength concrete, which is made of blast-furnace slag and silica fume, was used as the compound for this study, and the specimens were made into a saturated condition through the vacuum suction. According to the results of this study, all specimens were completely dried when they were under the temperature of 105℃ for more than 31 days. They were fully saturated after 72 hours through vacuum suction. In addition, relative moisture content responded more sensitively to moisture content than gravity moisture content did, so it can be concluded that relative moisture content is better in calculating the rational percentage of moisture content.

  • PDF

스포츠웨어용 투습방수직물의 열·수분이동 특성에 관한 연구 (A Study on the Heat and Moisture Transport Properties of Vapor-Permeable Waterproof Finished Fabrics for Sports Wear)

  • 손부현;김진아;권오경
    • 한국의류산업학회지
    • /
    • 제2권3호
    • /
    • pp.220-226
    • /
    • 2000
  • This study was to determine the characteristics of vapor-permeable waterproof finished fabric by the coating method. 4 different kinds of coating fabrics (A : wet, porous, polyurethane, B : dry, no porous, polyurethane, C : shape memory polyurethane and D : dry, porous polyurethane) were used, which were developed recently With this sample, moisture transport rate ($40^{\circ}C$, 45%RH & $40^{\circ}C$, 95%RH), changes of coating side's shape by washing times, water repellency rate, contracted length, qmax, heat conductivity, heat keeping rate, heat keeping rate with cotton, heat keeping rate on humidity temperature and humidity within clothing etc. were checked. And it was done in a climate chamber under $20{\pm}2^{\circ}C$, $65{\pm}5%RH$. The results of this study were as follow; In the moisture vapor transmission of sample B and C increased on high temperature and high humidity while sample A and D decreased, on this condition. Qmax rate had high relation with ground fabric's surface properties and the order was A>C>D>B. Heat conductivity had high relation with thickness and surface properties. Heat keeping rates on sweat condition showed around half percents of heat keeping rates on normal condition, but had no relation with moisture vapor transport rate. Changes of the fabric's properties by washing times were different in accordance with the construction of fabrics and the coating resin. Sample C had tow heat keeping rate on the high temperature and humidity and high heat keeping rate on the low temperature and humidity Moisture transport rate of vapor-permeable waterproof finished fabrics had high relation with the properties of ground fabrics on low humidity condition, but on the high humidity condition, it was highly related with the properties of coating resin.

  • PDF

Bendable 임베디드 전자모듈의 손상 메커니즘 (Failure Mechanism of Bendable Embedded Electronic Module Under Various Environment Conditions)

  • 조윤성;김아영;홍원식
    • Journal of Welding and Joining
    • /
    • 제31권5호
    • /
    • pp.59-63
    • /
    • 2013
  • A bendable electronic module has been developed for a mobile application by using a low-cost roll-to-roll manufacturing process. In flexible embedded electronic module, a thin silicon chip was embedded in a polymer-based encapsulating adhesive between flexible copper clad polyimide layers. To confirm reliability and durability of prototype bendable module, the following tests were conducted: Moisture sensitivity level, thermal shock test, high temperature & high humidity storage test, and pressure cooker tester. Those experiments to induce failure of the module due to temperature variations and moisture are the experiment to verify the reliability. Failure criterion was 20% increase in bump resistance from the initial value. The mechanism of the increase of the bump resistance was analyzed by using non-destructive X-ray analysis and scanning acoustic microscopy. During the pressure cooker test (PCT), delamination occurred at the various interfaces of the bendable embedded modules. To investigate the failure mechanism, moisture diffusion analysis was conducted to the pressure cooker's test. The hygroscopic characteristics of the encapsulating polymeric materials were experimentally determined. Analysis results have shown moisture saturation process of flexible module under high temperature/high humidity and high atmosphere conditions. Based on these results, stress factor and failure mechanism/mode of bendable embedded electronic module were obtained.

온도 변화에 따른 열습 환경하에서의 CFRP 모자형 단면부재의 강도평가 (Strength Evaluation on CFRP Hat-shaped Sectional Members According to Changes in Temperature Under Hygrothermal Environment)

  • 양용준;국현;양인영
    • 한국생산제조학회지
    • /
    • 제21권6호
    • /
    • pp.892-896
    • /
    • 2012
  • CFRP composites with light weight, high strength, and high elasticity by comparing with metal are widely used rather than previous steel plates. However, CFRP composite material has the weakness at hydrothermal and collapsed impact environment. Especially, moisture absorption into composite material can change molecule arrangement and chemical properties under hydrothermal environment. And static collapse experiment is the research in the differences of absorbed energy and deformation mode between moisture and non-moisture absorbed specimens. This study is compared and analyzed on the progress change of moisture absorption ratio after setting up the temperatures of 60 and 80 degrees C in order to comprehend how the change in the temperature influences on moisture absorption status inside CFRP composite materials.