• 제목/요약/키워드: High level platform

Search Result 283, Processing Time 0.024 seconds

THE EFFECT OF SURFACE TREATMENT OF THE CERVICAL AREA OF IMPLANT ON BONE REGENERATION IN MINI-PIG (미니돼지에서 발치 후 즉시 임플란트 매식시 치경부 표면처리가 골재생에 미치는 효과)

  • Cho, Jin-Yong;Kim, Young-Jun;Yu, Min-Gi;Kook, Min-Suk;Oh, Hee-Kyun;Park, Hong-Ju
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.3
    • /
    • pp.285-292
    • /
    • 2008
  • Purpose: The present study was performed to evaluate the effect of surface treatment of the cervical area of implant on bone regeneration in fresh extraction socket following implant installation. Materials and methods: The four minipigs, 18 months old and 30 kg weighted, were used. Four premolars of the left side of both the mandible and maxilla were extracted. ${\phi}$3.3 mm and 11.5 mm long US II plus implants (Osstem Implant co., Korea) with resorbable blasting media (RBM) treated surface and US II implants (Osstem Implant co., Korea) with machined surface at the top and RBM surface at lower portion were installed in the socket. Stability of the implant was measured with $Osstell^{TM}$ (Model 6 Resonance Frequency Analyser: Integration Diagnostics Ltd., Sweden). After 2 months of healing, the procedures and measurement of implant stability were repeated in the right side by same method of left side. At four months after first experiment, the animals were sacrificed after measurement of stability of all implants, and biopsies were obtained. Results: Well healed soft tissue and no mobility of the implants were observed in both groups. Histologically satisfactory osseointegration of implants was observed with RBM surface, and no foreign body reaction as well as inflammatory infiltration around implant were found. Furthermore, substantial bone formation and high degree of osseointegration were exhibited at the marginal defects around the cervical area of US II plus implants. However, healing of US II implants was characterized by the incomplete bone substitution and the presence of the connective tissue zone between the implant and newly formed bone. The distance between the implant platform (P) and the most coronal level of bone-to-implant contact (B) after 2 months of healing was $2.66{\pm}0.11$ mm at US II implants group and $1.80{\pm}0.13$mm at US II plus implant group. The P-B distance after 4 months of healing was $2.29{\pm}0.13$mm at US II implants group and $1.25{\pm}0.10$mm at US II plus implants group. The difference between both groups regarding the length of P-B distance was statistically significant(p<0.05). Concerning the resonance frequency analysis (RFA) value, the stability of US II plus implants group showed relatively higher RFA value than US II implants group. Conclusion: The current results suggest that implants with rough surface at the cervical area have an advantage in process of bone regeneration on defect around implant placed in a fresh extraction socket.

Design and Implementation of OBCP Engine based on Lua VM for AT697F/VxWorks Platform (AT697F/VxWorks 플랫폼에서 Lua 가상머신 기반의 OBCP 엔진 설계 및 구현)

  • Choi, Jong-Wook;Park, Su-Hyun
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.3
    • /
    • pp.108-113
    • /
    • 2017
  • The OBCP called 'operator on board' is that of a procedure to be executed on-board, which can be easily be loaded, executed, and also replaced, without modifying the remainder of the FSW. The use of OBCP enhances the on-board autonomy capabilities and increases the robustness to ground stations outages. The OBCP engine which is the core module of OBCP component in the FSW interprets and executes of the procedures based on script language written using a high-level language, possibly compiled, and it is relying on a virtual machine of the OBCP engine. FSW team in KARI has studied OBCP since 2010 as FSW team's internal projects, and made some OBCP engines such as Java KVM, RTCS/C and KKOMA on ERC32 processor target only for study. Recently we have been studying ESA's OBCP standard and implementing Lua and MicroPython on LEON2-FT/AT697F processor target as the OBCP engine. This paper presents the design and implementation of Lua for the OBCP engine on AT697F processor with VxWorks RTOS, and describes the evaluation result and performance of the OBCP engine.

IoT Middleware for Effective Operation in Heterogeneous Things (이기종 사물들의 효과적 동작을 위한 사물인터넷 미들웨어)

  • Jeon, Soobin;Han, Youngtak;Lee, Chungshan;Seo, Dongmahn;Jung, Inbum
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.9
    • /
    • pp.517-534
    • /
    • 2017
  • This paper proposes an Internet of Things (IoT) middleware called Middleware for Cooperative Interaction of Things (MinT). MinT supports a fully distributed IoT environment in which IoT devices directly connect to peripheral devices, easily constructing a local or global network and sharing their data in an energy efficient manner. MinT provides a sensor abstract layer, a system layer and an interaction layer. These layers enable integrated sensing device operations, efficient resource management, and interconnection between peripheral IoT devices. In addition, MinT provides a high-level API, allowing easy development of IoT devices by developers. We aim to enhance the energy efficiency and performance of IoT devices through the performance improvements offered by MinT resource management and request processing. The experimental results show that the average request rate increased by 25% compared to existing middlewares, average response times decreased by 90% when resource management was used, and power consumption decreased by up to 68%. Finally, the proposed platform can reduce the latency and power consumption of IoT devices.

Complexity-based Sample Adaptive Offset Parallelism (복잡도 기반 적응적 샘플 오프셋 병렬화)

  • Ryu, Eun-Kyung;Jo, Hyun-Ho;Seo, Jung-Han;Sim, Dong-Gyu;Kim, Doo-Hyun;Song, Joon-Ho
    • Journal of Broadcast Engineering
    • /
    • v.17 no.3
    • /
    • pp.503-518
    • /
    • 2012
  • In this paper, we propose a complexity-based parallelization method of the sample adaptive offset (SAO) algorithm which is one of HEVC in-loop filters. The SAO algorithm can be regarded as region-based process and the regions are obtained and represented with a quad-tree scheme. A offset to minimize a reconstruction error is sent for each partitioned region. The SAO of the HEVC can be parallelized in data-level. However, because the sizes and complexities of the SAO regions are not regular, workload imbalance occurs with multi-core platform. In this paper, we propose a LCU-based SAO algorithm and a complexity prediction algorithm for each LCU. With the proposed complexity-based LCU processing, we found that the proposed algorithm is faster than the sequential implementation by a factor of 2.38 times. In addition, the proposed algorithm is faster than regular parallel implementation SAO by 21%.

Analysis of Microbiota in Bellflower Root, Platycodon grandiflorum, Obtained from South Korea

  • Kim, Daeho;Hong, Sanghyun;Na, Hongjun;Chun, Jihwan;Guevarra, Robin B.;Kim, You-Tae;Ryu, Sangryeol;Kim, Hyeun Bum;Lee, Ju-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.4
    • /
    • pp.551-560
    • /
    • 2018
  • Bellflower root (Platycodon grandiflorum), which belongs to the Campanulaceae family, is a perennial grass that grows naturally in Korea, northeastern China, and Japan. Bellflower is widely consumed as both food and medicine owing to its high nutritional value and potential therapeutic effects. Since foodborne disease outbreaks often come from vegetables, understanding the public health risk of microorganisms on fresh vegetables is pivotal to predict and prevent foodborne disease outbreaks. We investigated the microbial communities on the bellflower root (n = 10). 16S rRNA gene amplicon sequencing targeting the V6-V9 regions of 16S rRNA genes was conducted via the 454-Titanium platform. The sequence quality was checked and phylogenetic assessments were performed using the RDP classifier implemented in QIIME with a bootstrap cutoff of 80%. Principal coordinate analysis was performed using the weighted Fast UniFrac distance. The average number of sequence reads generated per sample was 67,192 sequences. At the phylum level, bacterial communities from the bellflower root were composed primarily of Proteobacteria, Firmicutes, and Actinobacteria in March and September samples. Genera Serratia, Pseudomonas, and Pantoea comprised more than 54% of the total bellflower root bacteria. Principal coordinate analysis plots demonstrated that the microbial community of bellflower root in March samples was different from those in September samples. Potential pathogenic genera, such as Pantoea, were detected in bellflower root samples. Even though further studies will be required to determine if these species are associated with foodborne illness, our results indicate that the 16S rRNA gene-based sequencing approach can be used to detect pathogenic bacteria on fresh vegetables.

Correlation Between Walking Speeds and Lower Extremities Joint Moment in Obese (비만인들의 보행속도와 하지관절모멘트에 대한 상관관계 분석)

  • Shin, Sung-Hyoo;Kim, Tae-Whan;Kwon, Moon-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.3
    • /
    • pp.105-115
    • /
    • 2006
  • The purpose of this study is to elucidate the mechanical characteristics of lower extremity joint movements at different walking speeds in obese people and suggest the very suitable exercise for obese person's own body weight and basic data for clinical application leading to medical treatment of obesity. This experimental subjects are all males between the ages of 20 and 30, who are classified into two groups according to Body Mass Index(BMI): one group is 15 people with normal body weight and the other 15 obese people. Walking speed is analysed at 3 different speeds ($1.5^m/s$, $1.8^m/s$, $2.1^m/s$) which is increased by $0.3^m/s$ from the standard speed of $1.5^m/s$. We calculated joint moments of lower extremity during stance phase through video recording and platform force measurement.Two-way ANOVA(Analysis of Variance, Mix) is applied to get the difference of moments according to walking speeds between normal and obese groups. Pearson's Correlation Analysis is applied to look into correlation between walking speeds and joint moments in both groups. Significance level of each experiment is set as ${\alpha}=.05$. As walking speed increases maximum ankle plantar flexion moment in the stance phase is smaller in obese group than in normal group, which is suggestive of weak toe push-off during terminal stance in obese group, and the highest maximum ankle plantar flexion moment in obese group during the middle speed walking($1.8^m/s.$). Maximum ankle dorsal flexion moment in obese group is relatively higher than in normal group and this is regarded as a kind of compensatory mechanism to decrease the impact on ankle when heel contacts the floor. Maximum knee flexion and extension moments are both higher in normal group with an increase tendency proportional to walking speed and maximum hip flexion and extension moments higher in obese group. In summary, maximum ankle plantar flexion moment between groups(p<.025), maximum knee moment not in flexion but in extension(p<.001) within each group according to increasing walking speed, and maximum hip flexion and extension moment(p<.001 and p<.004, respectively according to increasing walking speed are statistically significant but knee and hip moments between groups are not. Pearson correlation are different: high correlation coefficients in maximum knee flexion and extension moments, in maximum hip extension moment but not hip flexion, and in maximum ankle dorsal flexion moment but not ankle plantar flexion, in each group. We suspect that equilibrium imbalance develops when the subject increases walking speed and the time is around which he takes his foot off the floor.

Study of DRM Application for the Portable Digital Audio Device (휴대용 디지털 오디오 기기에서의 DRM 적용에 관한 연구)

  • Cho, Nam-Kyu;Lee, Dong-Hwi;Lee, Dong-Chun;J. Kim, Kui-Nam;Park, Sang-Min
    • Convergence Security Journal
    • /
    • v.6 no.4
    • /
    • pp.21-27
    • /
    • 2006
  • With the introduction of sound source sharing over the high speed internet and portable digital audio, the digitalization of sound source has been rapidly expanded and the sales and distribution of sound sources of the former offline markets are stagnant. Also, the problem of infringement of copyright is being issued seriously through illegal reproduction and distribution of digitalized sound sources. To solve these problems, the DRM technology for protecting contents and copyrights in portable digital audio device began to be introduced. However, since the existing DRM was designed based on the fast processing CPU and network environment, there were many problems in directly applying to the devices with small screen resolution, low processing speed and network function such as digital portable audio devices which the contents are downloadable through the PC. In this study, the DRM structural model which maintains similar security level as PC environment in the limited hardware conditions such as portable digital audio devices is proposed and analyzed. The proposed model chose portable digital audio exclusive device as a target platform which showed much better result in the aspect of security and usability compared to the DRM structure of exiting portable digital audio device.

  • PDF

Development of Industrial Transgenic Plants Using Antioxidant (항산화효소 유전자를 이용한 산업용 형질전환식물체 개발)

  • Lee, Haeng-Soon;Kim, Kee-Yeun;Kwon, Suk-Yoon;Kwak, Sang-Soo
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2002.04b
    • /
    • pp.49-58
    • /
    • 2002
  • Oxidative stress derived from reactive oxygen species (ROS) is one of the major damaging factors in plants exposed to environmental stress. In order to develop the platform technology to solve the global food and environmental problems in the 21st century, we focus on the understanding of the antioxidative mechanism in plant cells, the development of oxidative stress-inducible antioxidant genes, and the development of transgenic plants with enhanced tolerance to stress. In this report, we describe our recent results on industrial transgenic plants by the gene manipulation of antioxidant enzymes. Transgenic tobacco plants expressing both superoxide dismutase (SOD) and ascorbate peroxidase (APX) in chloroplasts were developed and were evaluated their protection effects against stresses, suggesting that simultaneous overexpression of both SOD and APX in chloroplasts has synergistic effects to overcome the oxidative stress under unfavorable environments. Transgenic tobacco plants expressing a human dehydroascorbate reductase gene in chloroplasts were showed the protection against the oxidative stress in plants. Transgenic cucumber plants expressing high level of SOD in fruits were successfully generated to use the functional cosmetic purpose as a plant bioreactor. In addition, we developed a strong oxidative stress-inducible peroxidase promoter, SWPA2 from sweetpotato (Ipomoea batatas). We anticipate that SWPA2 promoter will be biotechnologically useful for the development of transgenic plants with enhanced tolerance to environmental stress and particularly transgenic cell lines engineered to produce key pharmaceutical proteins.

  • PDF

Sensing the Stress: the Role of the Stress-activated p38/Hog1 MAPK Signalling Pathway in Human Pathogenic Fungus Cryptococcus neoformans

  • Bahn, Yong-Sun;Heitman, Joseph
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2007.05a
    • /
    • pp.120-122
    • /
    • 2007
  • All living organisms use numerous signal-transduction pathways to sense and respond to their environments and thereby survive and proliferate in a range of biological niches. Molecular dissection of these signalling networks has increased our understanding of these communication processes and provides a platform for therapeutic intervention when these pathways malfunction in disease states, including infection. Owing to the expanding availability of sequenced genomes, a wealth of genetic and molecular tools and the conservation of signalling networks, members of the fungal kingdom serve as excellent model systems for more complex, multicellular organisms. Here, we employed Cryptococcus neoformans as a model system to understand how fungal-signalling circuits operate at the molecular level to sense and respond to a plethora of environmental stresses, including osmoticshock, UV, high temperature, oxidative stress and toxic drugs/metabolites. The stress-activated p38/Hog1 MAPK pathway is structurally conserved in many organisms as diverse as yeast and mammals, but its regulation is uniquely specialized in a majority of clinical Cryptococcus neoformans serotype A and D strains to control differentiation and virulence factor regulation. C. neoformans Hog1 MAPK is controlled by Pbs2 MAPK kinase (MAPKK). The Pbs2-Hog1 MAPK cascade is controlled by the fungal "two-component" system that is composed of a response regulator, Ssk1, and multiple sensor kinases, including two-component.like (Tco) 1 and Tco2. Tco1 and Tco2 play shared and distinct roles in stress responses and drug sensitivity through the Hog1 MAPK system. Furthermore, each sensor kinase mediates unique cellular functions for virulence and morphological differentiation. We also identified and characterized the Ssk2 MAPKKK upstream of the MAPKK Pbs2 and the MAPK Hog1 in C. neoformans. The SSK2 gene was identified as a potential component responsible for differential Hog1 regulation between the serotype D sibling f1 strains B3501 and B3502 through comparative analysis of their meiotic map with the meiotic segregation of Hog1-dependent sensitivity to the fungicide fludioxonil. Ssk2 is the only polymorphic component in the Hog1 MAPK module, including two coding sequence changes between the SSK2 alleles in B3501 and B3502 strains. To further support this finding, the SSK2 allele exchange completely swapped Hog1-related phenotypes between B3501 and B3502 strains. In the serotype A strain H99, disruption of the SSK2 gene dramatically enhanced capsule biosynthesis and mating efficiency, similar to pbs2 and hog1 mutations. Furthermore, ssk2, pbs2, and hog1 mutants are all hypersensitive to a variety of stresses and completely resistant to fludioxonil. Taken together, these findings indicate that Ssk2 is the critical interface protein connecting the two-component system and the Pbs2-Hog1 pathway in C. neoformans.

  • PDF

Development of Industrial Transgenic Plants Using Antioxidant Enzyme Genes (항산화효소 유전자를 이용한 산업용 형질전환식물체 개발)

  • Lee, Haeng-Soon;Kim, Kee-Yeun;Kwon, Suk-Yoon;Kwak, Sang-Soo
    • Journal of Plant Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.69-77
    • /
    • 2002
  • Oxidative stress derived from reactive oxygen species (ROS) is one of the major damaging factors in plants exposed to environmental stress. In order to develop the platform technology to solve the global food and environmental problems in the 21st century, we focus on the understanding of the antioxidative mechanism in plant cells, the development of oxidative stress-inducible antioxidant genes, and the development of transgenic plants with enhanced tolerance to stress. In this report, we describe our recent results on industrial transgenic plants by the gene manipulation of antioxidant enzymes. Transgenic tobacco plants expressing both superoxide dismutase (SOD) and ascorbate peroxidase (APX) in chloroplasts were developed and were evaluated their protection effects against stresses, suggesting that simultaneous overexpression of both SOD and APX in chloroplasts has synergistic effects to overcome the oxidative stress under unfavorable environments. Transgenic tobacco plants expressing a human dehydroascorbate reductase gene in chloroplasts were showed the protection against the oxidative stress in plants. Transgenic cucumber plants expressing high level of SOD in fruits were successfully generated to use the functional cosmetic purpose as a plant bioreactor. In addition, we developed a strong oxidative stress-inducible peroxidase promoter, SWPA2 from sweetpotato (lpomoea batatas). We anticipate that SWPA2 promoter will be biotechnologically useful for the development of transgenic plants with enhanced tolerance to environmental stress and particularly transgenic cell lines engineered to produce key pharmaceutical proteins.