• Title/Summary/Keyword: High landfill

Search Result 283, Processing Time 0.022 seconds

Characteristics of Leachate Quantity and Quality with Different Composition of Municipal Solid Waste in Solid Waste Landfill (매립폐기물 성상변화에 따른 침출수 수량 및 수질특성에 관한 연구)

  • Park, Jin-Kyu;Kim, Hye-Jin;Jeong, Sae-Rom;Lee, Nam-Hoon;Kim, Suk-Chan
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.15 no.2
    • /
    • pp.109-117
    • /
    • 2007
  • In order to investigate the quantitative and qualitative properties of leachate with different composition of MSW in solid waste landfill, three lysimeters filled with bottom ash only (Lysimeter A), bottom ash 70%+municipal solid waste 30% (Lysimeter B), and municipal solid waste only (Lysimeter C) respectively were operated under actual meteorological conditions. From the results, Lysimeter A and Lysimeter B were much higher than Lysimeter C in terms of cumulative generation rates of leachate. The pH in leachate from Lysimeter A are in the range of pH 9 to 11, however, the pH of the leachate was gradually changed to the neutral with time. In the case of $Cl^-$, leachates from Lysimeter A and B with bottom ash have high $Cl^-$ concentration whereas leachate produced from Lysimeter C has low $Cl^-$ concentration. In the Lysimeter C with municipal solid waste only, concentration of organic materials in the leachate was much higher than that of leachate produced from the other Lysimeters.

  • PDF

Estimation of the methane generation rate constant using a large-scale respirometer at a landfill site

  • Park, Jin-Kyu;Tameda, Kazuo;Higuchi, Sotaro;Lee, Nam-Hoon
    • Environmental Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.339-346
    • /
    • 2017
  • The objective of this study is the evaluation of the performance of a large-scale respirometer (LSR) of 17.7 L in the determination of the methane generation rate constant (k) values. To achieve this objective, a comparison between anaerobic (GB21) and LSR tests was conducted. The data were modeled using a linear function, and the resulting correlation coefficient ($R^2$) of the linear regression is 0.91. This result shows that despite the aerobic conditions, the biodegradability values that were obtained from the LSR test produced results that are similar to those from the GB21 test. In this respect, the LSR test can be an indicator of the anaerobic biodegradability for landfill waste. In addition, the results show the high repeatability of the tests with an average coefficient of variance (CV) that is lower than 10%; furthermore, the CV for the LSR is lower than that of the GB21, which indicates that the LSR-test method could provide a better representation of waste samples. Therefore, the LSR method allows for both the prediction of the long-term biodegradation potential in a shorter length of time and the reduction of the sampling errors that are caused by the heterogeneity of waste samples. The k values are $0.156y^{-1}$ and $0.127y^{-1}$ for the cumulative biogas production (GB21) and the cumulative oxygen uptake for the LSR, respectively.

Characteristics of treatment by Electrolysis with a change of electrodes in sanitary landfill leachate (전기분해법에서의 전극변화에 따른 위생매립장 침출수의 처리특성)

  • Huh, Mock;Kim, Byung-Hyun;Kim, Gwang-Jin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.1
    • /
    • pp.68-74
    • /
    • 2002
  • This study was performed to examine the availability of electrolysis for removal of remaining biologically refractoty humus and residual color of leachate which is biologically pretreated in domestic waste matter sanitary landfill by recycling to landfill. The obtained results were as follows; 1) The electrolysis of leachate through covered bed represented that the removal efficiency of CODcr and color range from 70~80%, in color removal the only electrolysis for a treatment of leachate meet the critia of effluent. 2) The highest removal efficiency was represented in pH 7~8. 3) At anode used Al, Fe, Stainless the removal efficiency of CODcr and color was high in order of Fe, Al, stainless, in considering the settled ability of reaction product in economic or after electro coagulation the removal efficiency was highest when anode was the Fe electrode. 4) In this study conditions for removed both CODcr and Color ar the same time represented thar anode was used Fe, electrode-distance was 2cm and reaction time was 40min in 8volts.

  • PDF

Stabilization of Solid Waste in Lysimeter by Air Injection Mode (공기주입 방식을 이용한 매립모형조내 폐기물 안정화)

  • Kim, Kyung;Park, Joon-Seok;Lee, Hwan;Lee, Cheol-Hyo;Kim, Joung-Dae
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.1
    • /
    • pp.15-22
    • /
    • 2005
  • This study was conducted to evaluate air injection mode on stabilization of solid waste in lysimeter. For three lysimeters, one was maintained under anaerobic condition as control, and air was injected into two lysimeters in continuous mode (atmospheric pressure) and intermittent mode (high pressure of 2 bar). Distilled water was sprayed over solid waste in 1.4 l/$m^3$(solid waste)/day, supposing rainfall intensity of 1,200 mm/yr and 30% infiltration. Oxygen in landfill gas was not detected in control lysimeter during operational days. After 30 day-aeration, oxygen concentrations of continuous and intermittent modes were maintained in 14% and 6%, respectively. $COD_{Cr}$ removal efficiencies of continuous and intermittent modes were about 70% and 50%, and BOD5 removal efficiencies were about 80% and 20%, respectively. In view of oxygen supply, and $COD_{Cr}$ and $BOD_5$ removal, continuous air injection mode of atmospheric pressure was more effective than intermittent mode of 2 bar. Settling degree of solid waste in case of two air injection modes was 3 times higher than that of anaerobic condition as control. Considering the above results, it was thought that air injection (especially continuous atmospheric pressure) could improve degradation of solid waste and induce preliminary stabilization in landfill site.

Feasibility Study of Microturbine CHP and Greenhouse $CO_2$ Enrichment System as Small Scale LFG Energy Project (소규모 매립가스 자원화를 위한 마이크로터빈 열병합발전 및 유리온실 $CO_2$ 농도 증가 시스템의 타당성 연구)

  • Park, Jung-Keuk;Hur, Kwang-Beom;Rhim, Sang-Gyu;Lee, In-Hwa
    • New & Renewable Energy
    • /
    • v.5 no.2
    • /
    • pp.15-24
    • /
    • 2009
  • As new small scale LFG (landfill gas) energy project model which can improve economic feasibility limited due to the economy of scale, LFG-Microturbine combined heat and power system with $CO_2$ fertilization into greenhouses was proposed and investigated including basic design process prior to the system installation at Gwang-ju metro sanitary landfill. The system features $CH_4$ enrichment for stable microturbine operation, reduction of compressor power consumption and low CO emission, and $CO_2$ supplement into greenhouse for enhancement plant growth. From many other researches, high $CO_2$ concentration was found to enhance $CO_2$ assimilation (also known as photosynthesis reaction) which converts $CO_2$ and $H_2O$ to sugar using light energy. For small scale landfills which produce LFG under $3\;m^3$/min, among currently available prime movers, microturbine is the most suitable power generation system and its low electric efficiency can be improved with heat recovery. Besides, since its exhaust gas contains very low level of harmful contaminants to plant growth such as NOx, CO and SOx, microturbine exhaust gas is a suitable and economically advantageous $CO_2$ source for $CO_2$ fertilization in greenhouse. The LFG-Microturbine combined heat and power generation system with $CO_2$ fertilization into greenhouse gas to enhance plant growth is technologically and economically feasible and improves economical feasibility compared to other small scale LFG energy project model.

  • PDF

LEACHING OF LEAD FROM DISCARDED NOTEBOOK COMPUTERS USING THE SCALE-UP TCLP AND OTHER STANDARD LEACHING TESTS

  • Jang, Yong-Chul;Townsend, Timothy G.
    • Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.14-27
    • /
    • 2006
  • The proper management of discarded electronic devices (often called electronic-waste) is an emerging issue for solid waste professionals throughout the world because of the large growth of the waste stream, and the content of toxic metals in them, most notably heavy metals such as lead. Notebook computers are becoming one of the major components of discarded computer devices and will continue to increase in the waste stream in the future. While the computers hold great promise for recycling, a substantial amount of this waste is often disposed in municipal solid waste (MSW) landfills. The toxicity characteristic leaching procedure (TCLP) is commonly used to simulate worse case leaching conditions where a potentially hazardous waste is assumed to be disposed along with municipal solid waste in a landfill with actively decomposing materials overlying an aquifer. The objective of this study was to examine leaching potential of lead from discarded notebook computers using the scale-up TCLP, other standard leaching tests such as California waste extraction test (Cal WET), and the synthetic precipitation leaching procedure (SPLP) and actual landfill leachates as leaching solution. The scale-up TCLP is a modified TCLP (where the device was disassembled and leached in or near entirety) to meet the intent of the TCLP. The results showed that the scale-up TCLP resulted in relatively high lead found in the leachate with an average of 23.3 mg/L. The average level was less than those by the standard TCLP and WET (37.0 mg/L and 86.0 mg/L, respectively), but much greater than those by the SPLP and the extractions with the landfill leachates (0.55 mg/L and 1.47 mg/L, respectively). The pH of the leaching solution and the ability of the organic acids in the TCLP and WET to complex with the lead were identified as major factors that controlled the amount of lead leached from notebook computers. Based on the results obtained by a number of leaching tests in this study, notebook computers may present a potential leaching risk to the environment and human health upon land disposal. However, further investigation is still needed to assess the true risk posed by the land disposal of discarded notebook computers.

Quantification of Volatile Organic Compounds in Gas Sample Using Headspace Solid-Phase Microextraction (고상 미세 추출법을 이용한 가스시료 중 휘발성유기화합물의 정량 분석)

  • Kim, Jae Hyuck;Kim, Hyunook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.12
    • /
    • pp.906-917
    • /
    • 2013
  • The purpose of this study is to quantify volatile organic compounds (VOCs) in gas sample using headspace solid-phase microextraction (HS-SPME) coupled to GC analysis. The optimal HS-SPME conditions was CAR/PDMS fiber and 30 min absorprion time for the analysis of various VOCs. In optimal conditions, 80 VOCs could be detected within 1 ppbv and even less than 0.0005 ppbv especially in the case of BTEX. However, fiber reproducibility on adsorption efficiency was 1~9.2% (between the same fiber) and 5.9~13.5% (between the other fiber). We successfully determined 35 VOCs in landfill gas with this method and found that VOCs of high concentration are emitting from vent pipe of closed/open landfill site under the HS-SPME conditions. This method may apply to VOCs/odor determination from various atmospheric environmental samples as well as landfills.

Sensitivity Analysis of the Leachate Level of a Landfill to Hydraulic Properties of Cover Soil and Waste (매립장의 복토재와 폐기물 수리특성에 대한 침출수위의 민감도 분석)

  • 주완호;장연수;김용인
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.2
    • /
    • pp.110-115
    • /
    • 1998
  • In this paper, the sensitivity of the leachate level is analyzed using the program HELP to reduce the high leachate level on the landfill. Hydraulic parameters analyzed were porosity, field capacity, wilting point and initial water content of cover soil and waste. Also, the influence of the difference between the initial water content and the field capacity on the leachate level in the landfill was analyzed. The results of the sensitivity analysis show that the increase of the porosity and the wilting point decreases the leachate level, while the increase of the field capacity and the hydraulic conductivity increases the leachate level. Major parameters to the change of the leachate level were the hydraulic conductivity in the case of cover soil and the porosity, the field capacity and the initial water content in the case of waste.

  • PDF

Assessment of asbestos exposure level of workers handling waste containing asbestos (석면함유폐기물 취급근로자의 석면노출수준 평가)

  • Jeong, Jee Yeon;Kim, Eun Young
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.2
    • /
    • pp.135-143
    • /
    • 2018
  • Objectives: There have been many studies on exposure assessment of workers at companies using asbestos as a raw material and at sites of the removal of materials containing asbestos. However, no research has been carried out on the asbestos exposure of workers in industries involving asbestos-containing waste, such as workers at collection and transportation service companies, mid-treatment companies(solidification of asbestos-containing waste), and landfill sites. The objective of this study was to assess the asbestos exposure concentrations of workers in industries handling waste containing asbestos. Methods: For this study, we carried out field investigations at 15 companies: seven collection and transportation service companies, three mid-treatment companies, and five final treatment companies(landfill sites). We took both personal and area samples. Results: The range of asbestos exposure levels of workers handing asbestos-containing wastes at collection, mid-treatment, and landfill companies were 0.000 fibers/cc-0.009 fibers/cc, 0.000 fibers/cc-0.038 fibers/cc, and 0.000 fibers/cc-0.024 fibers/cc, respectively. Conclusions: The asbestos exposure levels of workers at mid-treatment companies were higher than those at collection and transportation companies and at final treatment companies. In the case of collection and transportation workers, the possibility of exposure to levels exceeding those found in the present study is not particularly high considering the characteristics of the work. However, in the case of intermediate or final disposal workers, it is considered that there is a possibility of exposure to levels above those found in this study.

A Study on Thermally Bonded Geotextile Separator and Properties of Waste Landfill Application of PVA Geotextile/HDPE Geomembrane Composites

  • Min, Kyung-Ho;Seo, Jung-Min;Hwang, Beong-Bok;Lee, In-Chul;Ruchiranga, Jayasekara Vishara;Jeon, Han-Yong;Jang, Dong-Hwan;Lim, Joong-Yeon
    • Advanced Composite Materials
    • /
    • v.17 no.3
    • /
    • pp.235-246
    • /
    • 2008
  • This paper is concerned with geotextiles bonded chemically with geogrid to form a geocomposite. Geotextiles, thermally bonded and non-woven, play an important role as a separator. Also, this study investigates the resistance to the application environment of geotextile composites. Here, numerous tests have been performed and it was revealed from experimental results that thermally bonded geotextile in geosynthetic composites showed superior characteristics to that manufactured from needle punched non-woven method in terms of tensile strength, tensile strain and high separation performance. It was noted from experiments that the geotextile prepared for separation purpose and manufactured in a thermal bonding method showed relatively low permittivity so that it could be used as a smooth separator. In addition, PVA geotextile/HDPE geomembrane composites were designed and manufactured to investigate the waste landfill related properties. Numerous experiments have been performed and experimental results were summarized to evaluate practical applicability of PVA geotextile/HDPE geomembrane composites. Among the properties of proposed geomembrane composites, evaluation has been focused on the investigation of mechanical properties, AOS (apparent opening size), permittivity and ultraviolet stability.