• Title/Summary/Keyword: High intensity light source

Search Result 132, Processing Time 0.023 seconds

Analysis of a wavelength tunable source according to temperature variations in a Mutually Injected F-P LD (상호주입 잠김 F-P LD에서 온도변화에 따른 가변 파장 광원의 특성 분석)

  • Hwang, Ji-hong;Oh, Yeong-guk;Lee, Hyuek-jae;Lee, Chang-hee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.1009-1011
    • /
    • 2012
  • In this paper, a wavelength tunable light source based on mutually injected locking with two F-P LDs, has been constructed and then analyzed for wavelength shift and RIN (Relative Intensity noise) according to temperature. We have measured maximum about 2 nm for the wavelength shift and minimum -110dB/hz for the RIN. Also, the RIN and beating noise in eye patterns are increased by changing temperature high.

  • PDF

CMOS Image Sensor with Dual-Sensitivity Photodiodes and Switching Circuitfor Wide Dynamic Range Operation

  • Lee, Jimin;Choi, Byoung-Soo;Bae, Myunghan;Kim, Sang-Hwan;Oh, Chang-Woo;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.223-227
    • /
    • 2017
  • Conventional CMOS image sensors (CISs) have a trade-off relationship between dynamic range and sensitivity. In addition, their sensitivity is determined by the photodiode capacitance. In this paper, CISs that consist of dual-sensitivity photodiodes in a unit pixel are proposed for achieving wide dynamic ranges. In the proposed CIS, signal charges are generated in the dual photodiodes during integration, and these generated signal charges are accumulated in the floating-diffusion node. The signal charges generated in the high-sensitivity photodiodes are transferred to the input of the comparator through an additional source follower, and the signal voltages converted by the source follower are compared with a reference voltage in the comparator. The output voltage of the comparator determines which photodiode is selected. Therefore, the proposed CIS composed of dual-sensitivity photodiodes extends the dynamic range according to the intensity of light. A $94{\times}150$ pixel array image sensor was designed using a conventional $0.18{\mu}m$ CMOS process and its performance was simulated.

Effects of Photoperiod, Light Intensity and Electrical Conductivity on the Growth and Yield of Quinoa (Chenopodium quinoa Willd.) in a Closed-type Plant Factory System

  • Austin, Jirapa;Jeon, Youn A;Cha, Mi-Kyung;Park, Sookuk;Cho, Young-Yeol
    • Horticultural Science & Technology
    • /
    • v.34 no.3
    • /
    • pp.405-413
    • /
    • 2016
  • Quinoa (Chenopodium quinoa Willd.) is a plant native to the Andean region that has become increasing popular as a food source due to its high nutritional content. This study determined the optimal photoperiod, light intensity, and electrical conductivity (EC) of the nutrient solution for growth and yield of quinoa in a closed-type plant factory system. The photoperiod effects were first analyzed in a growth chamber using three different light cycles, 8/16, 14/10, and 16/8 hours (day/night). Further studies, performed in a closed-type plant factory system, evaluated nutrient solutions with EC (salinity) levels of 1.0, 2.0 or $3.0dS{\cdot}m^{-1}$. These experiments were assayed with two light intensities (120 and $143{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) under a 12/12 and 14/10 hours (day/night) photoperiod. The plants grown under the 16/8 hours photoperiod did not flower, suggesting that a long-day photoperiod delays flowering and that quinoa is a short-day plant. Under a 12/12 h photoperiod, the best shoot yield (both fresh and dry weights) was observed at an EC of $2.0dS{\cdot}m^{-1}$ and a photosynthetic photon flux density (PPFD) of $120{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. With a 14/10 h photoperiod, the shoot yield (both fresh and dry weights), plant height, leaf area, and light use efficiency were higher when grown with an EC of $2.0dS{\cdot}m^{-1}$ and a PPFD of $143{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. Overall, the optimal conditions for producing quinoa as a leafy vegetable, in a closed-type plant factory system, were a 16/8 h (day/night) photoperiod with an EC of $2.0dS{\cdot}m^{-1}$ and a PPFD of $143{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$.

Change of photosynthetic efficiency and yield by low light intensity on ripening stage in japonica rice (등숙기의 차광 처리에 의한 광합성능 및 쌀 수량 변화)

  • Lee, Min Hee;Kang, Shin-Gu;Sang, Wan-Gyu;Ku, Bon-Il;Kim, Young-Doo;Park, Hong-Kyu;Lee, Jeom-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.4
    • /
    • pp.327-334
    • /
    • 2014
  • Light intensity is one of the most important requirements for plant growth, affecting growth, development, survival, and crop productivity. Sunlight is the main energy source on Earth which is energy used by photosynthesis to convert light energy to chemical energy. In this study, the light use efficiency and photosynthetic characteristics of high-quality rice cultivars were evaluated after shading on ripening stage. For the study, we treated of three levels of shade (0, 50 and 70%) on rice at ripening stage and two levels of nitrogen (9 and 18 kg/10a) used three high yielding rice cultivars, such as Boramchan, Hopum, and Honong. The shade was given for the respective plots from heading up to harvesting. We were performed to determine growth survey, SPAD and chlorophyll fluorescence every 10 days interval after shading on ripening stage. At harvest stage, grain yield and yield components were determined. Results of analysis of the results representing the maximum photosynthetic efficiency of PSII, Fv/Fm, and SPAD were decreased by depending on the time at full sunlight. But shade treatments were not changed and a significant difference among cultivars did not appear. Compared with the full sunlight, shade treatments significantly delayed ripening rate and decreased rice quality of cultivated rice. Therefore, rice yield, can be reduced in proportion to the shading density is apparent, the rate of decrease was not observed difference between varieties, when protected from light 70%, and decreased to less than 50%. The adverse effects of low light intensity on the yield and yield components were not able to significantly minimize by the nitrogen level.

A Study on Job Techinique of Aquarium related Prospective Occupation in Korea (우리나라 수족관 관련 유망 직업의 직무기술에 관한 연구)

  • KIM, Sam-Kon;HA, Eun-Jong
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.21 no.2
    • /
    • pp.213-229
    • /
    • 2009
  • The purpose of this study is not only to provide students in the fishery high schools with source materials and opportunity, but also to contribute to a comprehensive development in educational program of the fishery high schools. It investigated various factors of aquarium related 6 new occupations : job contents, educational-level for job performance, training period, worker's capacity, the degree of physical activity, working place, and working environment. First, the work intensity is a normal work. The physical activities such as crawling, bending, accurately seeing a nearby thing and using hands are frequently used. The work is mainly conducted inside a room. The condition for a work environment is very moist and humid. Second, the work intensity is a light work. The physical activities such as using hands, speaking and accurately seeing a nearby thing are frequently used. The work is mainly conducted inside and outside a room. The work environment factor did not have any effect on the work. Third, the work is mainly conducted inside and outside a room. The risk in the condition for a work environment is found out as miscellaneous. Fourth, the physical activities such as bending, touching, and accurately seeing a nearby thing are frequently used. The work is mainly conducted inside a room. The work environment factor did not have any effect on the work. Fifth, the work is mainly conducted inside a room. The condition for a work environment is very moist and humid. Sixth, the work is mainly conducted inside a room. The work environment factor did not have any effect on the work.

An Automatic Back-Light Brightness Control System of Mobile Display Using Built-In Photo Sensor (내장형 광센서를 이용한 모바일 디스플레이의 자동 광원 밝기 조정 시스템)

  • Ryu, Jee-Youl;Noh, Seok-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.713-716
    • /
    • 2008
  • This paper presents an automatic back-light brightness control system for mobile displays. One of the most important factors in mobile display is the power consumption due to the limited and movable power source. More than 80% of power of the LCD display is consumed by LED bark-light unit (BLU). The target brightness also becomes higher because of its moving picture and high resolution image, so there are some side effects for not only excessive power consumption but also ergonomic inconvenience in dark environment. To prevent this discomfort and reduce power consumption, this paper proposes automatic brightness control (ABC) technique in mobile displays. Developed system contains TFT-LCD panel with built-in photo sensor, driver IC capable of controlling photo sensor, and BLU. Since the photo sensor array built in panel detects automatically outdoor ambient light intensity, the power of BLU in dark environment is reduced. Developed ABC system showed reduced power consumption of 50% in dark environment. We believe that the proposed system is very useful to control power of mobile TFT-LCD.

  • PDF

TIME VARIATIONS OF THE RADIAL VELOCITY OF H2O MASERS IN THE SEMI-REGULAR VARIABLE R CRT

  • Sudou, Hiroshi;Shiga, Motoki;Omodaka, Toshihiro;Nakai, Chihiro;Ueda, Kazuki;Takaba, Hiroshi
    • Journal of The Korean Astronomical Society
    • /
    • v.50 no.6
    • /
    • pp.157-165
    • /
    • 2017
  • $H_2O$ maser emission at 22 GHz in the circumstellar envelope is one of the good tracers of detailed physics and kinematics in the mass loss process of asymptotic giant branch stars. Long-term monitoring of an $H_2O$ maser spectrum with high time resolution enables us to clarify acceleration processes of the expanding shell in the stellar atmosphere. We monitored the $H_2O$ maser emission of the semi-regular variable R Crt with the Kagoshima 6-m telescope, and obtained a large data set of over 180 maser spectra over a period of 1.3 years with an observational span of a few days. Using an automatic peak detection method based on least-squares fitting, we exhaustively detected peaks as significant velocity components with the radial velocity on a $0.1kms^{-1}$ scale. This analysis result shows that the radial velocity of red-shifted and blue-shifted components exhibits a change between acceleration and deceleration on the time scale of a few hundred days. These velocity variations are likely to correlate with intensity variations, in particular during flaring state of $H_2O$ masers. It seems reasonable to consider that the velocity variation of the maser source is caused by shock propagation in the envelope due to stellar pulsation. However, it is difficult to explain the relationship between the velocity variation and the intensity variation only from shock propagation effects. We found that a time delay of the integrated maser intensity with respect to the optical light curve is about 150 days.

Fiber-optic biosensor for the detection of organophosphorus compounds in a contaminated water (Part I. : Design and development) (오염수 내의 유기인 화합물의 측정을 위한 광섬유 바이오센서 (제 1 부 : 장치 설계 및 개발 ))

  • Choi, Jeong-Woo;Min, Jun-Hong;Lee, Won-Hong
    • Journal of Sensor Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.50-56
    • /
    • 1994
  • Fiber-optic biosensor for the detection of organophosphorus compounds in a contaminated water was developed, which was the component of pesticides and agricultural agent. The detection principle of designed sensor was the pH variance induced by a reaction of acetylcholinesterase enzyme inhibited by organophosphorus compounds. The pH variance was detected by the optical system to measure the organophosphorus compounds. Litmus was selected as the pH-sensitive dye suitable to the enzyme reaction and a light source to be detected by the optical system. The enzyme entrapped in Ca-alginate gel was immobilized at the inner wall to maintain the high activity of enzyme and to be reused for a long period. The optical fiber was used to miniaturize and control remotely the sensor system. The He-Ne laser with 632 nm was selected as the light source to prevent light intensity fluctuation by the product. Cheap plastic optical fibers were used as the transmission part of the light and the phototransistor was used as the reception part of light based on the wavelength of He-Ne laser. The proposed fiber-optic biosensor has the linear analytical range of 0 ppm-1.5 ppm with response time of 5 minutes.

  • PDF

Development of Quantification Method for Bioluminescence Imaging (발광영상에 대한 정량화 방법 개발)

  • Kim, Hyeon-Sik;Choi, Eun-Seo;Tak, Yoon-O;Choi, Heung-Kook;Lee, Ju-Young;Min, Jung-Joon;Lee, Byeong-Il
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.5
    • /
    • pp.451-458
    • /
    • 2009
  • Purpose: Optical molecular luminescence imaging is widely used for detection and imaging of bio-photons emitted by luminescent luciferase activation. The measured photons in this method provide the degree of molecular alteration or cell numbers with the advantage of high signal-to-noise ratio. To extract useful information from the measured results, the analysis based on a proper quantification method is necessary. In this research, we propose a quantification method presenting linear response of measured light signal to measurement time. Materials and Methods: We detected the luminescence signal by using lab-made optical imaging equipment of animal light imaging system (ALIS) and different two kinds of light sources. One is three bacterial light-emitting sources containing different number of bacteria. The other is three different non-bacterial light sources emitting very weak light. By using the concept of the candela and the flux, we could derive simplified linear quantification formula. After experimentally measuring light intensity, the data was processed with the proposed quantification function. Results: We could obtain linear response of photon counts to measurement time by applying the pre-determined quantification function. The ratio of the re-calculated photon counts and measurement time present a constant value although different light source was applied. Conclusion: The quantification function for linear response could be applicable to the standard quantification process. The proposed method could be used for the exact quantitative analysis in various light imaging equipments with presenting linear response behavior of constant light emitting sources to measurement time.

Observation of Discharge Mode Transient from Townsend to Glow at Breakdown of Helium Atmospheric Pressure Dielectric Barrier Discharge (헬륨 대기압 유전체 격벽 방전기의 타운젠트-글로우 방전 모드 전이 연구)

  • Bae, Byeongjun;Kim, Nam-Kyun;Yoon, Sung-Young;Shin, Jun-Seop;Kim, Gon-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.2
    • /
    • pp.26-31
    • /
    • 2016
  • The Townsend to glow discharge mode transition was investigated in the dielectric barrier discharge (DBD) helium plasma source which was powered by 20 kHz / $4.5 kV_{rms}$ high voltage at atmospheric pressure. The spatial profile of the electric field strength at each modes was measured by using the intensity ratio method of two helium emission lines (667.8 nm ($3^1D{\rightarrow}2^1P$) and 728.1 nm ($3^1S{\rightarrow}2^1P$)) and the Stark effect. ICCD images were analyzed with consideration for the electric field property. The Townsend discharge (TD) mode at the initial stage of breakdown has the light emission region located in the vicinity of the anode. The electric field of the light emitting region is close to the applied field in the system. Immediately, the light emitting region moves to the cathode and the discharge transits to the glow discharge (GD) mode. This mode transition can be understood with the ionization wave propagation. The electric field of the emitting region of GD near cathode is higher than that of TD near anode because of the cathode fall formation. This observation may apply to designing a DBD process system and to analysis of the process treatment results.