• Title/Summary/Keyword: High impact strength

Search Result 680, Processing Time 0.027 seconds

Effect of Microstructure on Mechanical and Electrical Properties in Ni-YSZ of Anode Supported SOFC (연료극 지지체식 고체산화물 연료전지의 기계적 및 전기적 특성에 미치는 Ni-YSZ의 미세구조의 영향)

  • Choi, Mi-Hwa;Choi, Jin-Hyeok;Lee, Tae-Hee;Yoo, Young-Sung
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.5
    • /
    • pp.592-598
    • /
    • 2011
  • Electrode of solid oxide fuel cell must have sufficient porosity to allow gas transport to the interface with electrolyte effectively but high porosity has a negative impact on structural stability in electrode support. Thus, the upper limit of porosity is based on consideration of mechanical strength of electrode. In this study, the effect of microstructure of Ni-YSZ anode supported SOFC on the mechanical and electrical property was investigated. LSCF composite cathode and 8YSZ electrolyte were used. The porosity of the anode was modified by the amount of graphite powder and added graphite contents were 24, 18, 12 vol%, respectively. The higher the porosity, the better the electrical performance, $P_{max}$. While the flexural strength decreased with increasing the amount of graphite. But the rate of increase in electrical performance and the rate of decrease in mechanical strength were not directly proportional to amount of graphite. The optimum graphite content incorporating both electrical and mechanical performance was 18 vol%.

Analysis of Reel Tape Packing process conditions using DOE (실험계획법을 이용한 Reel Tape Packaging 공정조건 분석)

  • Kim, Jae Kyung;Na, Seung Jun;Kwon, Jun Hwan;Jeon, Euy Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.2
    • /
    • pp.105-109
    • /
    • 2020
  • Today's placement machines can pick and place thousands of components per hour with a very high degree of accuracy. The packaged semiconductor chips are inserted into a carrier at regular intervals, covered with a tape to protect the chips from external impact, and supplied in a roll form. These packaging processes also progress rapidly in a consistent direction, affecting the peelback strength between the cover tape and carrier depending on the main process conditions. In this paper, we analyzed the main process variables that affect peelback strength in the reel tape packaging process for packaging semiconductor chips. The main effects and interactions were analyzed. The peelback strength range required in the packaging process was set as the nominal the best characteristics, and the optimum process condition satisfying this was derived.

Prediction of long-term compressive strength of concrete with admixtures using hybrid swarm-based algorithms

  • Huang, Lihua;Jiang, Wei;Wang, Yuling;Zhu, Yirong;Afzal, Mansour
    • Smart Structures and Systems
    • /
    • v.29 no.3
    • /
    • pp.433-444
    • /
    • 2022
  • Concrete is a most utilized material in the construction industry that have main components. The strength of concrete can be improved by adding some admixtures. Evaluating the impact of fly ash (FA) and silica fume (SF) on the long-term compressive strength (CS) of concrete provokes to find the significant parameters in predicting the CS, which could be useful in the practical works and would be extensible in the future analysis. In this study, to evaluate the effective parameters in predicting the CS of concrete containing admixtures in the long-term and present a fitted equation, the multivariate adaptive regression splines (MARS) method has been used, which could find a relationship between independent and dependent variables. Next, for optimizing the output equation, biogeography-based optimization (BBO), particle swarm optimization (PSO), and hybrid PSOBBO methods have been utilized to find the most optimal conclusions. It could be concluded that for CS predictions in the long-term, all proposed models have the coefficient of determination (R2) larger than 0.9243. Furthermore, MARS-PSOBBO could be offered as the best model to predict CS between three hybrid algorithms accurately.

Experimental study on Mechanical Properties and Optimum Mix Design of Sulfur-Rubber Concrete (SRC) (황(黃)-고무 콘크리트의 역학적(力學的) 특성(特性)과 최적배합비(最適配合比)에 관한 연구(硏究))

  • Na, Okpin;Lee, Jaesung
    • Resources Recycling
    • /
    • v.22 no.1
    • /
    • pp.20-28
    • /
    • 2013
  • Recently, as the registration of vehicles increases, the utilization of the waste tires is emerging as environmental issues. Crumb rubber reproduced by scrap tires has been reused up to 25% in the construction field. The purpose of this paper is to investigate the mechanical properties of sulfur-rubber concrete (SRC) and to suggest the optimum mix design in terms of the compressive strength. Specimens were prepared with various mixing parameters: amount of sulfur, rubber, and micro-fillers. Two casting processes were also mentioned; dry process and wet process. The results mainly showed that the compressive strength of SRC decreased with an increment of rubber content. However, adding micro-filler and adjusting sulfur contents could improve the compressive strength of SRC. Optimum values of sulfur and rubber content were selected by workability and compressive strength of SRC. SRC can be applied to road constructions where high strength of concrete is not concerned, to wall panels that require low unit weight, to construction of median in highways to resist high impact load, and in sound barriers to absorb sound waves.

The Impact of Shoulder Flexion Angle on Hand Grip Strength in Male and Female Undergraduate Students (견관절 굴곡 각도가 남·녀 대학생의 악력 변화에 미치는 영향)

  • Ha, Kyung-Jin;Kim, Dae-Kyeong;Hwang, Seon-Keon
    • PNF and Movement
    • /
    • v.10 no.1
    • /
    • pp.9-17
    • /
    • 2012
  • Purpose : This study's purpose is consideration about change of the hand grip strength according to different posture and shoulder flexion angle. The shoulder joint permits the greatest mobility and carries out the important function of stabilization for hand use. Hand grip activity is important to evaluate while assessing loads of shoulder in hand mobilities. Methods : Thirty(15 male, 15 female) college students with unknown shoulder dysfunction participated subject in five different positions of elbow extension with sitting and standing posture, different positions is followed : (1) shoulder $0^{\circ}$ flexion (2) shoulder $45^{\circ}$ flexion (3) shoulder $90^{\circ}$ flexion (4) shoulder $135^{\circ}$ flexion (5) shoulder $180^{\circ}$ flexion. Results : On the average, in the hand grip strength, the standing posture is higher than sitting posture. Sitting posture showed a most high level at the man's $0^{\circ}$ and woman's $135^{\circ}$. And standing posture showed a most high level at the man's $135^{\circ}$ and woman's $90^{\circ}$. Conclusion : The paired t-test was used to determine the different in grip strength between sitting and standing posture by shoulder angle change. There was no significant difference between the five position by sitting and standing posture. In man, correlation analysis revealed significant connection for all five position by sitting and standing posture. And in woman, correlation analysis revealed connection for all five position by sitting and standing posture.

Geopolymer concrete with high strength, workability and setting time using recycled steel wires and basalt powder

  • Ali Ihsan Celik;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • v.46 no.5
    • /
    • pp.689-707
    • /
    • 2023
  • Geopolymer concrete production is interesting as it is an alternative to portland cement concrete. However, workability, setting time and strength expectations limit the sustainable application of geopolymer concrete in practice. This study aims to improve the production of geopolymer concrete to mitigate these drawbacks. The improvement in the workability and setting time were achieved with the additional use of NaOH solution whereas an increase in the strength was gained with the addition of recycled steel fibers from waste tires. In addition, the use of 25% basalt powder instead of fly ash and the addition of recycled steel fibers from waste tires improved its environmental feature. The samples with steel fiber ratios ranging between 0.5% and 5% and basalt powder of 25%, 50% and 75% were tested under both compressive and flexure forces. The compressive and flexural capacities were significantly enhanced by utilizing recycled steel fibers from waste tires. However, decreases in these capacities were detected as the basalt powder ratio increased. In general, as the waste wire ratio increased, the compressive strength gradually increased. While the compressive strength of the reference sample was 26 MPa, when the wire ratio was 5%, the compressive strength increased up to 53 MPa. With the addition of 75% basalt powder, the compressive strength decreases by 60%, but when the 3% wire ratio is reached, the compressive strength is obtained as in the reference sample. In the sample group to which 25% basalt powder was added, the flexural strength increased by 97% when the waste wire addition rate was 5%. In addition, while the energy absorption capacity was 0.66 kN in the reference sample, it increased to 12.33 kN with the addition of 5% wire. The production phase revealed that basalt powder and waste steel wire had a significant impact on the workability and setting time. Furthermore, SEM analyses were performed.

An FEM Analysis of the Rotor Shaft for a Vertical Impact Crusher (수직 임팩트 크러셔 샤프트에 관한 유한요소 해석)

  • 최영식;박명균;박세만
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.841-844
    • /
    • 2002
  • The vertical impact crusher is the machine which could produce artifical sand similar to natural aggregates in the site of guarry and pits. FEM was used to analyse the stress and strength of the machine at high rotational speed. The test specimen was made from the same material as the shaft and tension tests were conducted. The shaft under extreme conditions was analysed to determine maximum stress level and its location from the results. The maximum level of stress and its location could be predicted.

  • PDF

A Structural Engineer's Approach to Differential Vertical Shortening in Tall Buildings

  • Matar, Sami S.;Faschan, William J.
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.1
    • /
    • pp.73-82
    • /
    • 2017
  • Vertical shortening in tall buildings would be of little concern if all vertical elements shortened evenly. However, vertical elements such as walls and columns may shorten different amounts due to different service axial stress levels. With height, the differential shortening may become significant and impact the strength design and serviceability of the building. Sometimes column transfers or other vertical structural irregularities may cause differential shortening. If differential shortening is not addressed properly, it can impact the serviceability of the building. This paper takes the perspective of a structural engineer in planning the design, predicting the shortening and its effects, and communicating the information to the contractor.

The stress Analysis of Rotor shaft in a Vertical Impact Crusher (3D 유한요소법을 이용한 크러셔 샤프트 강도해석)

  • 유정열;박명균;박세만
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2004.05a
    • /
    • pp.211-220
    • /
    • 2004
  • The vertical impact crusher is the machine which could produce artifical sand similar to natural aggregates in the site of guarry and pits. FEM was used to analyse the stress and strength of the machine at high rotational speed. The test specimen was made from the same material as the shaft and tension tests were conducted. The Shaft under extreme conditions was analysed to determine maximum stress level and its location from the results. The maximum level of stress and its location could be predicted.

  • PDF

Influence of Ni on the Microstructure and Mechanical Properties of HSLA Steel Welds (고강도 저합금강 용접금속의 미세조직과 기계적 특성에 미치는 니켈 함량의 영향)

  • Kang, Yong-Joon;Jang, Ji-Hun;Park, Sang-Min;Lee, Chang-Hee
    • Journal of Welding and Joining
    • /
    • v.30 no.4
    • /
    • pp.49-54
    • /
    • 2012
  • The microstructure and mechanical properties of the high-strength low-alloy steel weld metals with a variation of nickel content were investigated. The weld metals with a variation of nickel content from 2.3 to 3.3 wt% were prepared using Gas Metal Arc Welding process. The amount of acicular ferrite decreased with increasing nickel content; this is accompanied with an increase in the region of bainite and martensite, hence the hardness and tensile strengths were increased with the increase in nickel content, whereas the impact energy was deteriorated.