• Title/Summary/Keyword: High heat input welding

Search Result 187, Processing Time 0.018 seconds

Effect of Process Variables on the Flash Butt Welding of High Strength Steel

  • Kim, Y.S.;Kang, M.J.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.2
    • /
    • pp.24-28
    • /
    • 2003
  • This study was aimed to evaluate the quality of flash welded joints and optimize the welding process for flash butt welding of 780MPa grade high strength steel. And then the relationship between the welding process variables and the joint quality would be established. The effect of process variables between flashing and upsetting process was elucidated. Microstructure observation of the joint indicated that the decarburized band was mainly changed with upsetting process. Width of HAZ was also related to the upsetting conditions rather than the flashing conditions. Generally maximum hardness at HAZ was correlated with Ceq of steel and the empirical relationship was obtained to estimate the HAZ properties. Tensile elongation at the joint was usually decreased with increasing the initial clamping distance. Investigation of fracture surface after tensile and bending tests reveal that the origin of cracking at the joint was oxide inclusions composed of $SiO_2$, MnO, $Al_2O_3$, and/or FeO. The amount of inclusions was dependent on the composition ratio of Mn/Si in steel. If this ratio was above 4, the amount of inclusions was low and then the resistance to cracking at the joint was enough to maintain the joint performance. It was obtained that the flashing process influenced the conditions for the energy input to establish uniform or non­uniform molten layer, while the upsetting conditions influenced the joint strength. Heat input variable during flashing process was also discussed with the joint properties.

  • PDF

Effect of Heat Input on Girth welds properties of High strain steel pipe (입열량이 고변형률 강관 원주 용접부 특성에 미치는 영향)

  • Lee, Jin-Woo;Song, Woo-Hyun;Seo, Dong-Han;Lee, Jong-Sub
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.71-71
    • /
    • 2010
  • SBD (Strain-based design) of pipe lines have gained world-wide attention in recent years. The present research aims to evaluate the fracture characteristics of API (America Petroleum Institute) SBD X100 girth weldment that typically applied for cold climate and deep water offshore, with the focus on the influence of heat input changing with 6kJ/cm and 10kJ/cm from GMAW (Gas Metal Arc Welding). At a low heat input at 6kJ/cm, the weld metal had Multi-phase matrix (Acicular ferrite + Banite + Martensite) that could fill up both fracture toughness and strength as reported previously. Also, the weld metal exhibited 859MPa YS (Yield strength), 108J impact toughness at $-40^{\circ}C$ and 0.52mm CTOD (Crack Tip Open Displacement) at $-10^{\circ}C$. These results can be satisfied with the requirement of API SBD X100 girth weldment and Alaska pipe line project.

  • PDF

A Study on the Characteristics of Welding Residual Stresses and Groove Sja[e pf Cprmer Joint in Box Column with Ultra Thick Plate (극후판 Box Column 코너이음부의 용접잔류응력 및 Groove형상 특성에 관한 연구)

  • 방한서;안규백;김종명;석한길;장웅성
    • Journal of Welding and Joining
    • /
    • v.17 no.1
    • /
    • pp.97-103
    • /
    • 1999
  • Ships, structures on the ocean, bridges, and other structures tend to be large by the development of industry. These ultra thick plate were welded with large heat input, which causes welding stresses, deformation and buckling, so it has to be considered the weld design, safety, reliability. The welded residual stresses were produced and redistributed due to the effect of large heat input. The mechanical phenomenon has not been surely identified yet. In spite of the lack of the study on the box column, there are various types of steel frame such as I type, H type, + type and $\bigcirc$ type, used in high story building. In this study, we performed computer simulation with two dimensional heat conduction and plane deformation thermal elasto-plastic finite element computer program as changing the plate thickness to 100mm, 150mm and groove angle to $60^{\circ}C$, $45^{\circ}C$, $30^{\circ}C$ of corner joint in box column. And then, to identify mechanical phenomenon such as the phenomenon of thermal distribution, welding residual stresses and deformation and to decide optimum groove angle and welding condition. The main conclusion can be summarized as follows: 1) Since the groove angle has became cooling down rapidly due to its smaller value, the temperature slope was steeped somewhat. 2) The tensile stress within the welding direction stresses was somewhat decreased at the weld metal and HAZ, increasing of the groove angle. 3) The local stress concentration of the groove angle $60^{\circ}C$ was appeared smaller than groove angle $30^{\circ}$.

  • PDF

Arc efficiency and kerf width in plasma arc cutting process (플라즈마 절단공정에서의 아아크 효율과 절단폭)

  • 노태정;나석주
    • Journal of Welding and Joining
    • /
    • v.5 no.1
    • /
    • pp.23-33
    • /
    • 1987
  • Plasma arc cutting is a fusion cutting process in which a gas constricted arc is employed to produce high temperature, high velocity jet at the workpiece. Even though the plasma arc cutting has been wid¬ely used in the industry, very little work has been done on the analysis of the process. In this paper, the kerf width was numerically analyzed by soving the temperature distribution in base metal under consideration of the latent heat effect. In modelling the heat flow problem, the heat intensity of the plasma arc was assumed to have a Gaussion distribution in the transverse direction and expone¬ntially decreasing in the thickness direction. The thermal efficiency and the heat input ratio of the top surface were experimentally deterimned for various thickness and cutting conditions, and used in numerical calculation of the kerf width. The experimental results were in eonsiderabely good agreement with the theoretically predicted kerf width.

  • PDF

High power CO$_{2}$laser beam welding of ASIA 316 stainless steel

  • 김재도;조용무
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.321-327
    • /
    • 1991
  • High power laser beams are used in a wide variety of materials processing applications such as cutting, welding, drilling and surface treatment. The CO$\sub$2/ laser is increasingly used in laser beam welding because of the highly potential advantages. High power laser welding is a high energy density, no filler metals and low heat input process to join metals. As the comparison with the conventiona welding, precision work and good fit-up to join the metals are required and maintenance is expensive at present. The principal variables of laser beam welding are the laser beam power, travel speed and bean spot size. The penetration depth during laser beam welding is directly related to the power density of the laser beam. Generally, for a constant beam size, the penetration depth increases with increasing laser beam power.

A STUDY ON THE FORMATION OF IMPERFECTIONS IN CW $CO_2$ LASER WELD OF DIAMOND SAW BLADE

  • Minhyo Shin;Lee, Changhee;Kim, Taiwoung;Park, Heedong
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.639-643
    • /
    • 2002
  • The main purpose of this study was to investigate the formation mechanisms of imperfections such as irregular humps, outer cavity and inner cavity in the laser fusion zone of diamond saw blade. Laser beam welding was conducted to join two parts of blade; mild steel shank and Fe-Co-Ni sintered tip. The variables were beam power and travel speed. The microstructure and elements distributions of specimens were analyzed with SEM, AES, EPMA and so on. It was found that these imperfections were responded to heat input. Irregular humps were reduced in 10.4∼17.6kJ/m heat input range. However there were no clear evidences, which could explain the relations between humps formation and heat input. The number of outer cavity and inner cavity decreased as heat input was increased. Considering both possible defects formations mechanisms, it could be thought that outer cavity was caused by insufficient refill of keyhole, which was from rapid solidification of molten metal and fast molten metal flow to the rear keyhole wall at low heat input. More inner cavities were found near the interface of the fusion zone and sintered segment and in the bottom of the fusion zone. Inner cavity was mainly formed in the upper fusion zone at high heat input whereas was in the bottom at low heat input. Inner cavity was from trapping of coarsened preexist pores in the sintered tip and metal vapor due to rapid solidification of molten metal before the bubbles escaped.

  • PDF

A Study on the Fiber Laser welding of Ultra-Low Carbon Interstitial Free Steel for Automotive (자동차용 무침입형 극저탄소강의 파이버 레이저 용접에 대한 연구)

  • Oh, Yong-Seok;Shin, Ho-Jun;Yang, Yun-Seok;Hwang, Chan-Youn;Yoo, Young-Tae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.342-349
    • /
    • 2011
  • The purpose of this paper is to describe experimental results about the butt welding and bead on plate welding of the high power Continuous Wave (CW) Fiber laser for Ultra-low carbon Interstitial Free(IF) steel plate for gear part of car. After being welded of the gear parts by the fiber laser and electron beam Microstructures of melting zone had been mixed acicular, granular bainitic, quasi-polygonal and widmanstatten ferrite because of a radical thermal diffusion after welding, difference of critical volume and grain size. As a result of experiment, when gear parts were welded by the fiber laser and electron beam, the fiber laser welding has been stable properties without internal defects more than the electron beam welding. Therefore it has the very advantages of welding high quality and productivity more than conventional melting method. The optimal welding processing parameters for gear parts were as follows : the laser power and welding speed were 3kWatt, 30mm/sec respectively. At this time heat input was $21.2{\times}10^3J/cm^2$.

Characteristics of Dissimillar Three-Sheet Resistance Spot Welding for Advanced High Strength Steel with Cover Plate (커버 플레이트를 이용한 이종 3겹 저항 점 용접성 평가)

  • Shim, Junghyun;Rhee, Sehun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.5
    • /
    • pp.373-379
    • /
    • 2016
  • Low carbon steel is usually used as the outer panel with low base metal resistance compared to the inner reinforced panel made with high strength steel, which makes it difficult to form a robust nugget. To overcome welding problems of a dissimilar three-sheet combination made of SGACEN, DP980 and CP1180, a cover plate was inserted between the upper electrode and SGACEN. The quality of the nugget was analyzed by comparing the welding signals and cross sectional images under maximum heat input both with and without the cover plate. To analyze the mechanical of weld properties, a hardness test analysis was conducted. To enhance the reliability of experimental results, temperature distributions were obtained using a simulation program. The method of inserting a cover plate led to a change in the heat input, which induced a larger nugget size between SGACEN and DP980.

Weldability of Pure Titanium Thin plate for LPG Re-Condenser by Nd:YAG Laser - Physical Constant and Welding Parameter - (LPG 재응축기용 순티타늄 박판의 Nd:YAG 레이저 용접성(I) - 순티타늄의 물성과 용접변수 -)

  • Kim, Jong-Do;Gwak, Myeong-Seop;Lee, Chang-Je;Kim, Chang-Su
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.363-365
    • /
    • 2007
  • Titanium and its alloys have excellent corrosion resistance, high strength to weight ratios and high temperature creep properties, which make them using many various fields of application. Responding to these needs, welding processes for titanium are also being used including TIG, MIG, resistance welding, plasma arc welding, diffusion welding, electron beam welding and laser welding. In this study, It is possible to get sound beads without humping bead and spatter with the decrease of peak power according to increase of pulse width and change of welding speed for heat input control at pulsed Nd:YAG laser welding of titanium plates for Lap welding.

  • PDF

Characteristics of Fatigue Crack Growth in SM570, POSTEN60, 80 Steel (SM570, POSTEN60 및 80 강재의 피로균열성장특성)

  • Jeong, Young-Wha;Kim, lk-Gyeom;Kang, Sung-Lib;Nam, Wang-Hyone;Kim, Eun-Sung
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.329-336
    • /
    • 2001
  • In this study, a series of fatigue tests are carried out in order to estimate quantitatively the characteristics of fatigue crack growth rate for high strength steels of SM570, POSTEN60, and POSTEN80 steel, that is, the influence on fatigue crack growth rate according to the welding line, the characteristics of fatigue crack growth according to the welding method and the kinds of steel, and the characteristics of fatigue crack growth for base metal, heat affected zone and weld metal. From the test results, in case that the notch if parallel to welding line, it knows that the retardations of fatigue crack growth rate in crack tip at early stage increase remarkably than in case that the notch is perpendicular to welding line due to compressive residual stress. And the characteristics of fatigue crack growth rate according to welding method are that the dispersion of fatigue crack growth rate in case of FCAW method is smaller than that of SAW method. Also, it knows that the fatigue crack growth rate converges in high stress intensity factor range.

  • PDF