• Title/Summary/Keyword: High heat input

Search Result 361, Processing Time 0.028 seconds

The Propagation Behaviour of the Fatigue Crack in the Compact Tension Specimens of the Welded Structural Steels (On according to the difference of the welding direction, the input heat level, the strength of weld material and so on) (용접(鎔接)이음한 구조강(構造鋼)의 소인장시험편(小引張試驗片)에서의 피로구열진전거동(疲勞龜裂進展擧動) (용접방향(鎔接方向), 입열량(入熱量), 용접재료(鎔接材料)의 강도(强度) 등이 다를 때))

  • Chang, Dong Il;Chung, Yeong Wha
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.2
    • /
    • pp.133-142
    • /
    • 1984
  • With the weld-joined compact tension specimens compared with each other, that is, transverse and lengthwise about the crack propagation direction, high and low in the input heat level, same as and lower than the base metal in the strength of weld material, the fatigue test were performed. With these data, the log-log curves between the fatigue crack propagation rate ${\frac{da}{dN}}$ and the transition range of the stress intensity factor ${\Delta}K$ ahead the crack tip were drawed. These curves were compared and estimated among each compared specimens, among each zones, that is, the base metal, the heat-affected metal and the weld-mixed metal, and between this study and the past studies. Basically, Little difference in the slope of the $da/dN-{\Delta}K$ relation was showed in all the welded directions, all the input heat levels and all the zones. But, First, to comparison with in the past studies about the base metals, it was showed that da/dN started in the much later rate, increased faster and stoped in the little faster rate. Second, it was showed that, near the time the crack's going from the heat-affected zone to the weld-mixed metal da/dN decreased a little for a while. Third, in the lengthwise weld compared with the transverse weld, in the high input heat weld compared with the low input heat weld in the case used the weld material of the same strength as the base metal, in the opposite case in the case used the one of the lower strength than the base metal, in the case used the weld material of the same strength as compared with the lower strength than the base metal beside the high input heat and the lengthwise weld, it was showed that the crack occured earlier in lower ${\Delta}K$ and later da/dN, the curves went with the same slope. Forth, in the lengthwise weld compared with the transverse weld in the low input heat weld, in the low input heat weld compared with the high input heat weld, it was showed that da/dN went with the lower level.

  • PDF

High Efficiency Bridgeless Power Factor Correction Converter With Improved Common Mode Noise Characteristics (우수한 공통 모드 노이즈 특성을 가진 브릿지 다이오드가 없는 고효율 PFC 컨버터)

  • Jang, Hyo-Seo;Lee, Ju-Young;Kim, Moon-Young;Kang, Jeong-Il;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.2
    • /
    • pp.85-91
    • /
    • 2022
  • This study proposes a high efficiency bridgeless Power Factor Correction (PFC) converter with improved common mode noise characteristics. Conventional PFC has limitations due to low efficiency and enlarged heat sink from considerable conduction loss of bridge diode. By applying a Common Mode (CM) coupled inductor, the proposed bridgeless PFC converter generates less conduction loss as only a small magnetizing current of the CM coupled inductor flows through the input diode, thereby reducing or removing heat sink. The input diode is alternately conducted every half cycle of 60 Hz AC input voltage while a negative node of AC input voltage is always connected to the ground, thus improving common mode noise characteristics. With the aim to improve switching loss and reverse recovery of output diode, the proposed circuit employs Critical Conduction Mode (CrM) operation and it features a simple Zero Current Detection (ZCD) circuit for the CrM. In addition, the input current sensing is possible with the shunt resistor instead of the expensive current sensor. Experimental results through 480 W prototype are presented to verify the validity of the proposed circuit.

Development of Structural Steel and Trend of Welding Technology (건설용 강재개발 및 용접기술동향)

  • Kim, Sung Jin;Jeong, Hong Chul
    • Journal of Welding and Joining
    • /
    • v.34 no.1
    • /
    • pp.7-20
    • /
    • 2016
  • A brief overview is given of the development of various structural steels and their welding application technology. Firstly, the general characteristics and welding performance of structural steels used in architecture and bridge are introduced. For safety against earthquakes or strong wind, and for highly efficient welding in high-rise building constructions, ultra high strength steel with tensile strength over 800 MPa or high HAZ toughness steel plates under high heat input welding have been developed. In particular, efficient welding technology ensuring high resistance to cold and hot cracking of ultra high strength steel is reviewed in the present paper. Secondly, various coated steels used mainly for outer part in construction are briefly discussed. Moreover, a major drawback of coated steel during welding operation, and several solutions to overcome such technical problem are proposed. It is hoped that this review paper can lead to significant academic contributions and provide readers interested in the structural steels with useful welding technology.

A Study on Optimization of Thermophysiological Indices for Harbor Workers in Summer: Improvement of MENEX Model's Input Data Considering the Work Environment (하계 항만열환경지수 최적화 방안연구: 항만작업환경을 반영한 MENEX모델의 입력변수 개선)

  • Yun, Jinah;Hwang, Mi-Kyoung;Kim, Yoo-Keun
    • Journal of Environmental Science International
    • /
    • v.25 no.7
    • /
    • pp.951-961
    • /
    • 2016
  • To prevent increasing instances of heat-related illnesses due to heat waves generated by climate change, a customized thermal environment index should be developed for outdoor workers. In this study, we conducted sensitivity analysis of the Masan harbor during a heat wave period (August 9th to 15th, 2013) using the MENEX model with metabolic rate and clothing-insulation data, in order to obtain realistic information about the thermal environment. This study shows that accurate input data are essential to gather information for thermophysiological indices (PST, DhR, and OhR). PST is sensitive to clothing insulation as a function of clothing. OhR is more sensitive to clothing insulation during the day and to the metabolic rate at night. From these results, it appears that when exposed to high-temperature thermal environments in summer, wearing highly insulated clothing and getting enough rest (to lower the metabolic rate) can aid in preventing heat-related illnesses. Moreover, in the case of high-intensity harbor work, quantification of allowed working time (OhR) during heat waves is significant for human health sciences.

Evaluation of Laser Welding Characteristics of 1.5GPa Grade Ultra High Strength Steel for Automotive Application (1.5GPa급 자동차용 고강도강의 레이저 용접부 특성평가)

  • Kim, Yong;Park, Ki-Young;Lee, Kyoung-Don;Jeong, Jun-Kou;Kim, Dong-Wha
    • Laser Solutions
    • /
    • v.13 no.4
    • /
    • pp.1-6
    • /
    • 2010
  • Recently the use of ultra high strength steels (UHSS) in structural and safety component is rapidly increasing in the automotive industry. For example, 1.5GPa grade hot stamping with die-quenching of boron steel 22MnB5 could apply crash-resistant parts such as bumpers and pillars. The development of laser welding process of hot stamping steels, fundamental bead-on-plate welding and lap joint welding test were carried out using 3kW Nd:YAG laser. Local hardening & HAZ softening occurred in hot stamping steel as a result of metallurgical change caused by the welding heat input in the Nd:YAG laser welding process. The size of soft zones in the hot stamping steel was related to the welding heat input, being smaller at high speeds which generated a smaller heat input. Also in the case of lap joint design structure, same welded characteristics were shown. The HAZ softening degree was controlled to ensure the joint strength.

  • PDF

Influence of process parameters on the kerfwidth for the case of laser cutting of CPS 1N sheet using high power CW Nd:YAG laser (고출력 연속파형 Nd:YAG 레이저를 이용한 CSP 1N 냉연강판 절단시 공정변수의 절단폭에 미치는 영향)

  • Kim Min-Su;Lee Sang-Hoon;Park Hyung-Jun;Yoo Young-Tae;Ahn Dong-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.19-26
    • /
    • 2005
  • The objective of this study is to investigate the influence of process parameters, such as power of laser, cutting speed of laser and material thickness, on the practical cutting region and the kerfwidth fer the case of cutting of CSP IN sheet using high power Nd:YAC laser in continuous wave(CW) mode. In order to obtain the practical cutting region and the relationship between process parameters on the kerfwidth, several laser cutting experiments are carried out. The effective heat input is introduced to consider the influence of power and cutting speed of laser on the kerfwidth together. From the results of experiments, the allowable cutting region and the relationship between the effective heat input and kerfwidth fur the case of cutting of CSP 1N sheet using high power CW Nd:YAG laser have been obtained to improve the dimensionalaccuracyofthecutarea.

Prediction of Welding Imperfection with Idealization of Welding and Their Accuracy (용접이상화에 의한 용접부정의 예측과 정도)

  • Lee, Jae-Yik;Chang, Kyong-Ho;Kim, You-Chul
    • Journal of Welding and Joining
    • /
    • v.31 no.5
    • /
    • pp.15-19
    • /
    • 2013
  • In order to reduce a grand compute time in prediction of welding distortion and residual stress by 3D thermal elastic plastic analysis, idealization of welding that is methods to heat input simultaneously in all weld metal on the same welding direction is carried out on two weld joints(butt welding and fillet welding). Then, the accuracy of acquired results is investigated through the comparison of the high accuracy prediction results. The thermal conduction analysis results by idealization of welding, the temperature is raised accompany with beginning of heat input because all of weld metal is heated input at the same time. On the other side, the temperature witch predicted with high accuracy is raised at the moment heating source passes the measuring points. So, there is difference of time between idealization of welding and considering of moving heat source faithfully. However, temperature history by idealization of welding is well simulated a high accuracy prediction results.

A Study on the Development of High Deposition Automatic Vertical Welding of Erection Stage in Shipbuilding (조선 탑재용접용 대입열 수직자동용접법의 개발에 관한 연구)

  • Park, Ju-Yong;Choe, Woo-Hyeon
    • Journal of Welding and Joining
    • /
    • v.26 no.5
    • /
    • pp.66-73
    • /
    • 2008
  • Welding work in pre-erection or erection stage of shipbuilding construction to be carried out in flat and vertical upward position mostly and Electrogas welding(EGW) is actively applied especially for vertical butt joint of thicker steel plate recently. In this study considered how to develope and improve mechanical properties of weld metal and HAZ in high heat input welding processes such as EGW and Electroslag welding(ESW) with its welding equipment in order to extend the application range to the longitudinal members and hatch coaming parts of container ship. Some components of welding system and parameters were modified to get the faster travel speed and reduce weld heat input, and also by adding additional filler rods or tubes increase the amount of deposited weld metal. With the test get some good date can apply to actual fabrication work and recommend items to manufacture welding materials make better. Above all things it's a fruition that to prepare the possibility of application of ESW to shipbuilding construction which fill up the gap of stoppage days of more than 20 years.

A study on the weldability of 1500MPa grade hot stamping steels in the GMAW (1500MPa급 Hot stamping 강재의 GMAW 용접성에 관한 연구)

  • Hwang, J.;Kim, J.S.;Kim, C.H.;Lee, B.Y.
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.64-64
    • /
    • 2009
  • The use of ultra high strength steels (UTSS) is a natural result with increasing the demands for the lightweight materials and developing an innovative steel technology. Recently it has been used a 1500MPa grade hot stamping steel as automobile bodies, reinforcement parts, and seat frame parts in the automotive industry. It is a quenchenable steel manufactured by hot stamping process. It is well known that UTSS welding has softening in the heat affected zone(HAZ). Because welding is a sort of process applying heat, it should change the heat treated features and degrade the strength. This study was performed to investigate the influence of the heat input on the softening of the HAZ in the GMAW process. Each experiment was compared with that in the conditions having a different current and voltage at a same heat input. In order to analysis characteristics of the HAZ, optical microscope was used to observe microstructure and vickers hardness tests were carried out across the welds. Applying low heat input means a fast cooling rate. It leads to high hardness in the HAZ. It is found that characteristics of the HAZ are determined by microstructure obtained by different cooling rate.

  • PDF

Weldability with Process Parameters During Fiber Laser Welding of a Titanium Plate (II) - The Effect of Control of Heat Input on Weldability - (티타늄 판재의 파이버 레이저 용접시 공정변수에 따른 용접특성 (II) - 입열량 제어에 따른 영향 -)

  • Kim, Jong Do;Kim, Ji Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.12
    • /
    • pp.1055-1060
    • /
    • 2016
  • Laser welding is a high-density energy welding method. Hence, deep penetration and high welding speed can be realized with lower heat input as compared with conventional welding. The heat input of a CW laser welding is determined by laser power and welding speed. In this study, bead and lap welding of $0.5mm^t$ pure titanium was performed using a fiber laser. Its weldability with laser power and welding speed was evaluated. Penetration, bead width, joining length, and bead shape were investigated, and the mechanical properties were examined through tensile-shear strength tests. Welds with sound joining length were obtained when the laser power and welding speed were respectively 0.5 kW and 2.5 m/min, and 1.5 kW and 6 m/min, and the weld obtained at low output presented better ductility than that obtained at high output.