• Title/Summary/Keyword: High heat emission

Search Result 303, Processing Time 0.03 seconds

EFFECT OF MIXTURE PREPARATION IN A DIESEL HCCI ENGINE USING EARLY IN-CYLINDER INJECTION DURING THE SUCTION STROKE

  • Nathan, S. Swami;Mallikarjuna, J.M.;Ramesh, A.
    • International Journal of Automotive Technology
    • /
    • v.8 no.5
    • /
    • pp.543-553
    • /
    • 2007
  • It is becoming increasingly difficult for engines using conventional fuels and combustion techniques to meet stringent emission norms. The homogeneous charge compression ignition(HCCI) concept is being evaluated on account of its potential to control both smoke and NOx emissions. However, HCCI engines face problems of combustion control. In this work, a single cylinder water-cooled diesel engine was operated in the HCCI mode. Diesel was injected during the suction stroke($0^{\circ}$ to $20^{\circ}$ degrees aTDC) using a special injection system in order to prepare a nearly homogeneous charge. The engine was able to develop a BMEP(brake mean effective pressure) in the range of 2.15 to 4.32 bar. Extremely low levels of NOx emissions were observed. Though the engine operation was steady, poor brake thermal efficiency(30% lower) and high HC, CO and smoke were problems. The heat release showed two distinct portions: cool flame followed by the main heat release. The low heat release rates were found to result in poor brake thermal efficiency at light loads. At high brake power outputs, improper combustion phasing was the problem. Fuel deposited on the walls was responsible for increased HC and smoke emissions. On the whole, proper combustion phasing and a need for a well- matched injection system were identified as the important needs.

Effect of pre-post injection timing of diesel fuel for naval vessel on the combustion and emission characteristics in an optically-accessible single cylinder diesel engine (단기통 디젤엔진에서 함정용 디젤유의 전·후 분사시기가 연소 및 배출가스 특성에 미치는 영향)

  • Lee, Hyungmin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.868-876
    • /
    • 2014
  • The objective of this study is focused on the analyzing combustion, carbon monoxide and hydrocarbon emission characteristics of marine diesel oil, utilized for naval propulsion engine, with varying pre-post injection timing of an optically accessible single cylinder engine. And also the combustion process is analyzed by means of a high speed camera visualization. On the result of retarding pre-injection timing toward main injection timing, the mean effective pressure and maximum pressure of combustion chamber are increased; however, the heat release rate is decreased. Furthermore, the emission rates of carbon monoxide and hydrocarbon are reduced in this case. In hence, when a post-injection timing is advanced, the mean effective pressure and maximum pressure are increased, because the combustion has been performed under the high temperature and high pressurized environment during main injection time, and the emission rates of carbon monoxide and hydrocarbon are increased. From the experimental results, it considered that retarding of pre-injection timing affects to shorten the ignition delay of main injection clearly, and to raise the flame intensity comparing to the advanced state. The ignition delay during post-injection is not appeared at any post-injection time, but the flame intensity has been weakened gradually according to the retarding of post-injection timing.

Carbon nanotube field emission display

  • Chil, Won-Bong;Kim, Jong-Min
    • Electrical & Electronic Materials
    • /
    • v.12 no.7
    • /
    • pp.7-11
    • /
    • 1999
  • Fully sealed field emission display in size of 4.5 inch has been fabricated using single-wall carbon nanotubes-organic vehicle com-posite. The fabricated display were fully scalable at low temperature below 415$^{\circ}C$ and CNTs were vertically aligned using paste squeeze and surface rubbing techniques. The turn-on fields of 1V/${\mu}{\textrm}{m}$ and field emis-sion current of 1.5mA at 3V/${\mu}{\textrm}{m}$ (J=90${\mu}{\textrm}{m}$/$\textrm{cm}^2$)were observed. Brightness of 1800cd/$m^2$ at 3.7V/${\mu}{\textrm}{m}$ was observed on the entire area of 4.5-inch panel from the green phosphor-ITO glass. The fluctuation of the current was found to be about 7% over a 4.5-inch cath-ode area. This reliable result enables us to produce large area full-color flat panel dis-play in the near future. Carbon nanotubes (CNTs) have attracted much attention because of their unique elec-trical properties and their potential applica-tions [1, 2]. Large aspect ratio of CNTs together with high chemical stability. ther-mal conductivity, and high mechanical strength are advantageous for applications to the field emitter [3]. Several results have been reported on the field emissions from multi-walled nanotubes (MWNTs) and single-walled nanotubes (SWNTs) grown from arc discharge [4, 5]. De Heer et al. have reported the field emission from nan-otubes aligned by the suspension-filtering method. This approach is too difficult to be fully adopted in integration process. Recently, there have been efforts to make applications to field emission devices using nanotubes. Saito et al. demonstrated a car-bon nanotube-based lamp, which was oper-ated at high voltage (10KV) [8]. Aproto-type diode structure was tested by the size of 100mm $\times$ 10mm in vacuum chamber [9]. the difficulties arise from the arrangement of vertically aligned nanotubes after the growth. Recently vertically aligned carbon nanotubes have been synthesized using plasma-enhanced chemical vapor deposition(CVD) [6, 7]. Yet, control of a large area synthesis is still not easily accessible with such approaches. Here we report integra-tion processes of fully sealed 4.5-inch CNT-field emission displays (FEDs). Low turn-on voltage with high brightness, and stabili-ty clearly demonstrate the potential applica-bility of carbon nanotubes to full color dis-plays in near future. For flat panel display in a large area, car-bon nanotubes-based field emitters were fabricated by using nanotubes-organic vehi-cles. The purified SWNTs, which were syn-thesized by dc arc discharge, were dispersed in iso propyl alcohol, and then mixed with on organic binder. The paste of well-dis-persed carbon nanotubes was squeezed onto the metal-patterned sodalime glass throuhg the metal mesh of 20${\mu}{\textrm}{m}$ in size and subse-quently heat-treated in order to remove the organic binder. The insulating spacers in thickness of 200${\mu}{\textrm}{m}$ are inserted between the lower and upper glasses. The Y\ulcornerO\ulcornerS:Eu, ZnS:Cu, Al, and ZnS:Ag, Cl, phosphors are electrically deposited on the upper glass for red, green, and blue colors, respectively. The typical sizes of each phosphor are 2~3 micron. The assembled structure was sealed in an atmosphere of highly purified Ar gas by means of a glass frit. The display plate was evacuated down to the pressure level of 1$\times$10\ulcorner Torr. Three non-evaporable getters of Ti-Zr-V-Fe were activated during the final heat-exhausting procedure. Finally, the active area of 4.5-inch panel with fully sealed carbon nanotubes was pro-duced. Emission currents were character-ized by the DC-mode and pulse-modulating mode at the voltage up to 800 volts. The brightness of field emission was measured by the Luminance calorimeter (BM-7, Topcon).

  • PDF

A Study on Development of Oval Type High Efficient EGR Cooler (고효율 Oval형 EGR 쿨러 개발에 관한 연구)

  • Lee, Joon;Moon, Jeon-Il;Han, Chang-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.89-94
    • /
    • 2011
  • The EGR system is one of important components in diesel engine. The regulation on NOx emission has been tightened up. Therefore, it is a significant issue to develop and commercialize the high efficient EGR cooler system that reduces NOx emission in DI diesel engine. Key performance factor of the EGR cooler system is how to properly design both wavy cooling fins and gas tubes. This paper proposes a high efficient EGR cooler that has been upgraded with both the optimized wavy cooling fins and the improved shape of structure. The evaluation of the heat exchange efficiency, outlet temperature, and gas pressure drop of the EGR cooler is performed with the prototype of the proposed EGR cooler. The result shows a good solution and will be implemented to the model of a clean diesel engine being developed for both domestic and overseas market.

A Study on the Improvement of Lubrication Characteristics for Fuel Pump in LPG Engine (자동차용 LPG 연료펌프의 윤활성 개선에 관한 연구)

  • Kim, Chang-Up;Choi, Kyo-Nam;Kang, Kern-Yong;Park, Cheol-Woong
    • Journal of ILASS-Korea
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • In recent years, the need for more fuel-efficient and lower-emission vehicles has driven the technical development of alternative fuels such as LPG (Liquefied Petroleum Gas) which is able to meet the limits of better emission levels without many modifications to current engine design. LPG has a high vapor pressure and lower viscosity and surface tension than diesel and gasoline fuels. These different fuel characteristics make it difficult to directly apply the conventional gasoline or diesel fuel pump. Self acting lubricated groove design or coating can be used in high-speed and high precision spindle system like a roller-vane type fuel pump, because of its advantages such as low frictional loss, low heat generation, averaging effect leading better running accuracy and simplicity in manufacturing. Those design method can also affect the atomization of fuel from the injector and the formation of fuel film on the intake manifold. In this study, experiments are carried out to get performance characteristics of initial and steady state operation, The characteristics of vane type fuel pump were investigated to access the applicability on LPLi engine.

Evaluation of Microscopic Deformation Behaviors of Metal Matrix Composite due to Heat Treatment by means of SFC Test and Acoustic Emission (음향방출과 SFC 시험법에 의한 금속복합재료의 기지재 열처리 효과에 따른 미시적 변형기구 특성 평가)

  • Kang, Moon-Phil;Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.5
    • /
    • pp.381-389
    • /
    • 2000
  • Metal matrix composite(MMCs) have been rapidly becoming one of the strongest candidates for structural materials for high temperature application. It is well recognized that MMCs always experience at least one large cool-down from processing temperature before my significant applied service loading. Due to the large difference in thermal expansion coefficient between the fiber and matrix, large thermal residual stresses generally develop in composites. It was reported from many previous studies that the effects of thermal residual stress on mechanical properties and fracture behavior were much more complex and dramatic than conventional engineering materials. Therefore it is crucial to evaluate the effect of heat treatment which changes the characteristic of distribution of thermal residual stress in MMCs. Single fiber composite(SFC) test based on the balance in a micromechanical model is a quite convenient method to evaluate interfacial shear strength(IFSS) and the failure mode of composite. In this study the effect of heat treatment on IFSS and the microscopic failure mechanism of MMC is investigated by combining acoustic emission(AE) technique with SFC test. The characteristic of AE signal, IFSS and microscopic failure mechanism due to heat treatment condition is discussed.

  • PDF

AE Characteristics for Weld HAZ in SM 490A Steel (SM 490A 강의 용접 열영향부 음향방출 특성)

  • 이장규;우창기;박성완;김봉각;윤종희;인승현
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2002.11a
    • /
    • pp.257-262
    • /
    • 2002
  • The object of this study is to investigate the effect of compounded welding through the AE (Acoustic Emission) characteristics for weld HAZ (Heat Affected Zone) on static tensile test. This study was carried out a SM 490A, high tension steel using the low hydrogen type E4316 of electronic shield metal arc welding, compound wire of $CO_2$ gas arc welding and tungsten electrode of TIG welding.

  • PDF

Properties of Y3Al5O12:Ce3+,Pr3+ Single Crystal for White Laser Lightings (백색 레이저 조명용 Y3Al5O12:Ce3+,Pr3+ 단결정 특성)

  • Kang, Taewook;Lim, Seokgyu;Kim, Jongsu;Lee, Bong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.37-41
    • /
    • 2018
  • $Y_3A_{l5}O_{12}:Ce^{3+},Pr^{3+}$ single crystal phosphor was prepared by floating zone method. single crystal was confirmed to have a Ia-3d (230) space group of cubic structure and showed regular morphology. The optical properties, single crystal exhibited a emission band from green, yellow wide wavelength and 610nm, 640nm red wavelength vicinity. The luminance maintenance rate was decreased by phonon with increasing temperature, but high luminance is maintained more than powder phosphor. In addition, $Y_3A_{l5}O_{12}:Ce^{3+},Pr^{3+}$ single crystal phosphor was applied to a high power blue laser diode, we implemented high power white laser lightings. and it was confirmed that thermal properties over time, due to the effective heat transfer of complete crystal structure. We confirmed that excellent radiant heat properties than powder phosphor was applied to a high power white laser diode.

Optimization on Bar-to-Bar Similar Friction Welding of Hydraulic Valve Spool Steels and the Weld Strength Properties and its AE Evaluation (유공압밸브스풀용 강재의 봉 대 봉 동종대 마찰용접의 최적화와 용접강도 특성 및 AE품질 평가)

  • 오세규;이경우;전태언;오명석;이원석
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.69-76
    • /
    • 1996
  • In-process quality control and high reliability of the weld are the major concerns in applying friction welding to the economical and qualified mass-production. Experimental examinations and quantitative analysis were performed for the optimiaztion of similar friction welding of hydraulic valve spool steels(SNCM220, SCM435, SACM645, SCM415, ${\varphi}24). The quantitative correlations were found between the initial cumulative counts of acoustic emission(AE) occurring during plastic deformation periods of the welding and the fatigue life as well as weld strength and welding conditions. A real-time evaluation system was developed for the friction weld quality by AE.

  • PDF

The Evaluation of Mixed-welded SM 490A Steel by Acoustic Emission (1) (음향방출법에 의한 SM490A강의 복합용접성 평가 (1))

  • 이장규;우창기;박성완;김봉각;윤종희;인승현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.170-173
    • /
    • 2002
  • The object of this study is to investigate the effect of compounded welding through the AE (Acoustic Emission) characteristics on static tensile test. This study was carried out a SM 490A, high tension steel using the low hydrogen type E4316 of electronic shield metal arc welding and compound wire of $CO_2$gas arc welding. $CO_2$welding, weak in the intensity of HAZ (Heat Affected Zone), can be improved by being combined with coated arc welding, Coated arc welding, weak in the intensity of the bead, can be improved by being combined with $CO_2$welding. Especially, electronic coated arc welding and $CO_2$welding complement the mechanical intensity of HAZ and the bead with each other. So, compounded welding increases the intensity in the special parts and enhances the quality of goods.

  • PDF