• Title/Summary/Keyword: High fuel pump

Search Result 153, Processing Time 0.031 seconds

Estimation of explosion risk potential in fuel gas supply systems for LNG fuelled ships (액화 천연 가스 연료 선박의 연료 공급 장치 폭발 잠재 위험 분석)

  • Lee, Sangick
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.9
    • /
    • pp.918-922
    • /
    • 2015
  • As international environmental regulations for pollutant and greenhouse gas emissions discharged from ships are being reinforced, it is drawing attention to use LNG as ship fuel. This paper compares the explosion risk potential in the LNG fuel gas supply systems of two types used in marine LNG fuelled vessels. By selecting 8500 TEU class container ships as target, LNG storage tank was designed and pressure conditions were assumed for the use of each fuel supply type. The leak hole sizes were divided into three categories, and the leak frequencies for each category were estimated. The sizes of the representative leak holes and release rates were estimated. The release rate and the leak frequency showed an inverse relationship. The pump type fuel gas supply system showed high leak frequency, and the pressure type fuel gas supply system showed high release rate. Computational fluid dynamics simulation was applied to perform a comparative analysis of the explosion risk potential of each fuel supply system.

Optimal Design of RSOFC System Coupled with Waste Steam Using Ejector for Fuel Recirculation (연료 재순환 이젝터를 이용한 연료전지-폐기물 기반 가역 고체 산화물 연료전지의 최적 설계)

  • GIAP, VAN-TIEN;LEE, YOUNG DUK;KIM, YOUNG SANG;QUACH, THAI QUYEN;AHN, KOOK YOUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.4
    • /
    • pp.303-311
    • /
    • 2019
  • Reversible solid oxide fuel cell (RSOFC) has become a prospective device for energy storage and hydrogen production. Many studies have been conducted around the world focusing on system efficiency improvement and realization. The system should have not only high efficiency but also a certain level of simplicity for stable operation. External waste steam utilization was proved to remarkably increase the efficiency at solid oxide electrolysis system. In this study, RSOFC system coupled with waste steam was proposed and optimized in term of simplicity and efficiency. Ejector for fuel recirculation is selected due to its simple design and high stability. Three system configurations using ejector for fuel recirculation were investigated for performance of design condition. In parametric study, the system efficiencies at different current density were analyzed. The system configurations were simulated using validated lumped model in EBSILON(R) program. The system components, balance of plants, were designed to work in both electrolysis and fuel cell modes, and their off-design characteristics were taken into account. The base case calculation shows that, the system with suction pump results in slightly lower efficiency but stack can be operated more stable with same inlet pressure of fuel and air electrode.

Analysis of Internal Temperature Change according to the Application of Thermal Insulation Paint and Heat Pump in Broilers (육계사의 차열 페인트 및 히트펌프 적용에 따른 내부 기온 변화 분석)

  • Jun-Seop Mun;Rack-Woo Kim;Seung-Hun Lee;Sang Min Lee;Sang Kyu Choi
    • Journal of Bio-Environment Control
    • /
    • v.32 no.3
    • /
    • pp.197-204
    • /
    • 2023
  • Heat stress causes a decrease in immunity and disease occurrence in livestock, increasing mortality and impairing productivity. In particular, chickens are very vulnerable to high temperatures compared to other livestock species because their entire body is covered with feathers and sweat glands are not developed. Currently, air conditioning systems are essential in broiler houses to prevent high-air temperature damage to broilers, but conventional cooling facilities are greatly affected by the external environment, so there are limits to their use. In this study, to propose a cooling method, thermal insulation paint and a heat pump were apply in the broiler houses to evaluate the temperature reduction effect. The heat pump experiment was to analyze the cooling effect according to the change in ventilation rate and propose an appropriate. As a result of the experiment, the heat-insulating paint reduced the temperature of the broiler houses by maximum 1-2℃, and in the broiler houses where the heat pump was operated, the temperature decrease was the largest when the ventilation rate was the lowest. When the air temperature in the house is similar to or lower than the outside air temperature, it is considered to be most effective to use a heat pump while maintaining only the minimum ventilation rate.

Improvement of engine noise causing rough sound quality (거친 청감을 유발하는 엔진소음 개선 방향 고찰)

  • Jung, Insoo;Kim, Sukzoon;Cho, Teockhyeong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.4
    • /
    • pp.242-247
    • /
    • 2018
  • The automotive industry is making various efforts to cope with ever-increasing exhaust emissions and fuel economy regulations. However, this often results in degraded NVH (Noise, Vibration, and Harshness) performance. For example, we proposed the causes and improvements for the noise generated by the high-pressure pump noise of a gasoline engine, the change of acceleration noise due to dual injection of MPI (Multi-Point Injection) and GDI (Gasoline Direct Injection), the noise of a gasoline turbocharger, and the combustion noise deteriorated due to the injection parameters calibration in a diesel engine. Since these noises are caused by the high frequency noise, and the driver feels the rough sound quality, efforts to reduce them with proper NVH measures are indispensable.

A Numerical Analysis for High Performance on DME High Pressure Fuel Pump Using Taguchi Method (Taguchi Method 을 이용한 DME 고압 연료 펌프에 대한 고성능 수치 해석)

  • SAMOSIR, BERNIKE FEBRIANA;CHO, WONJUN;LIM, OCKTAECK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.6
    • /
    • pp.636-641
    • /
    • 2021
  • Using numerical analysis, various factors influencing the performance development of high-pressure pumps for Dimethyl Ether (DME) engines were identified and the impact of each factor was evaluated using Taguchi method. DME fuels are more compressive than diesel fuels and have the lower heat generation, so it is necessary to increase the size of the plunger and speed (RPM) of the pump as well. In addition, it is necessary to change the shape and design of control valve to control the discharge flow and pressure. In this study, various variables affecting the performance and flow rate increase of high-pressure pumps for DME engines are planned using Taguchi method, and the best design method is proposed using correlation of the most important variables. As a result, we were able to provide the design value needed for a six-liter engine and provide optimal conditions. The best combination factors to optimize the flow rate at RPM 2,000 and diameter plunger with 20 mm. The regression equation can also be used to optimize the flow rate; -8, 13+0, 2552 RPM +54, 17 diam. Plunger.

Transfer characteristics of a lithium chloride-potassium chloride molten salt

  • Mullen, Eve;Harris, Ross;Graham, Dave;Rhodes, Chris;Hodgson, Zara
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1727-1732
    • /
    • 2017
  • Pyroprocessing is an alternative method of reprocessing spent fuel, usually involving the dissolving spent fuel in a molten salt media. The National Nuclear Laboratory designed, built, and commissioned a molten salt dynamics rig to investigate the transfer characteristics of molten lithium chloride-potassium chloride eutectic salt. The efficacy and flow characteristics of a high-temperature centrifugal pump and argon gas lift were obtained for pumping the molten salt at temperatures up to $500^{\circ}C$. The rig design proved suitable on an industrial scale and transfer methods appropriate for use in future molten salt systems. Corrosion within the rig was managed, and melting techniques were optimized to reduce stresses on the rig. The results obtained improve the understanding of molten salt transport dynamics, materials, and engineering design issues and support the industrialization of molten salts pyroprocessing.

A Study on the Energy Reduced Cooling System for the Ship (선박용 에너지 절감형 냉각시스템에 관한 연구)

  • Oh, Jin-Seok;Lim, Kyu-Myung;Jin, Sun-Ho;Kwak, Jun-Ho;Jo, Kwan-Jun;Yu, Byung-Rang;Bae, Byung-Deok
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.1108-1112
    • /
    • 2005
  • Recently, the fuel charge is accounted for very high in the navigation cost. Therefore Shipowner is tried to find method for reducing oil consumption. ERCS(Energy Reduced Cooling System) is one of the method. The ERCS algorithm operates to decrease a power consumption of main sea water cooling pump through inverter control. We have developed ERCS controller with algorithm. The ERCS controller consists of CPU board, Digital I/O board, A/D board, D/A board and LCD/SW board. We tested with dummy signal to confirm the algorithm working correctly and achieved the good results. Before soon we will test under real condition in the ship and expect to get the result as forecasted.

  • PDF

The Fuel Characteristics of Diesel by Water Contamination (수분오염에 따른 경유의 연료적 특성)

  • Lim, Young-Kwan;Won, Ki-Yoe;Kang, Byung-Seok;Park, So-Hwi;Park, Jang-Min;Kang, Dea-Hyuk
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.385-390
    • /
    • 2020
  • It rains heavily, such as long rain and typhoons, during a typical rainy season in Korea. In this season, several fuel contamination accidents by water and vehicular problems caused by water contaminated fuel occur. Many research groups have studied the effects of water contaminated fuel on vehicles and environment. However the characteristics of water contaminated fuel have not been studied. In this study, we prepared diesel samples with a constant ratio of water (0~30 volume %) using an emulsifier. Then, we analyzed these diesel samples for their representative fuel properties. In the analytical results, diesel with 30% water showed an increase in fuel properties such as density (823→883 kg/㎥), kinematic viscosity (2.601→6.345 ㎟/s), flash point (47→56℃), pour point (-22→2℃), CFPP (cold filter plugging point) (-17→20℃) and copper corrosion number (1a→2a). The low temperature characteristics, such as low pour point and CFPP, blocks the fuel filter in the cold season. In addition, water contaminated diesel decreases lubricity (190→410 ㎛) under high frequency reciprocating rig (HFRR) and derived cetane number (54.81→34.25). The low lubricity of fuel causes vehicle problem such as pump and injector damage owing to severe friction. In addition, the low cetane diesel fuel increases exhaust gases such as NOx and particulate matters (PM) owing to incomplete combustion. This study can be used to identify the problems caused by water contamination to vehicle and fuel facilities.

New reliquefaction system of Boil-Off-Gas by LNG cold energy (LNG냉열이용 BOG 재액화긍정 해석연구)

  • 윤상국;최형식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.256-263
    • /
    • 2002
  • The Boil-Off-Gases(BOG) in the LNG production terminal are continuously generated during the unloading, storage and supply processes by the heat penetration. In order to use these gases as useful fuel, the reliquefaction process should be installed to put the reliquefied BOG in the main LNG supply line before the secondary pump in terminal. The current reliquefaction method of BOG in LNG terminal is the direct contact one between LNG and BOG in the absorption column. But the system has severe disadvantage, which is the 10 times of LNG circulation needed for unit mass of BOG reliquefaction. It causes, therefore, high power consumption of LNG circulation pump and excessive city-gas supply, even if short demand of NG is needed in the summer time. In this paper, the new reliquefaction system of BOG by using LNG cold energy with indirect contact in precooler was suggested and analysed. The result showed new indirect contact method of BOG reliquefaction system between LNG cold energy and BOG is much more effective than the current direct contact one because of only about 1.3 times of LNG circulation needed and higher energy saving by pump power reduction.

Comparison Analysis of Dynamic Characteristics of Servo-hydraulic Piezo-driven Injector between 3-way and Bypass-circuit Type (3-way형과 Bypass형 서보유압 피에조 인젝터의 구동특성 비교)

  • Jo, Insu;Jeong, Myoungchul;Lee, Jinwook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.169-175
    • /
    • 2013
  • CRDi technology of diesel engine was developed from in the early 2000s due to a need to increase fuel efficiency and environment care. Especially, high-pressure fuel injection system in CRDi system which has a fuel injection unit including an injector, a fuel pump and common-rail, etc. becomes possible to make the exhaust gas clean as well as power improvement. In this study, comparison of dynamic characteristics of servo-hydraulic piezo-driven injector with 3-way and bypass-circuit type was analyzed by using the AMESim code. As results of this study, it found the bypass-circuit inside servo-hydraulic piezo injector can cause a faster injection response than that of the 3-way type. Also it was shown that bypass-circuit type had better control capability due to hydraulic bypass system.