• 제목/요약/키워드: High fuel pump

검색결과 153건 처리시간 0.022초

커먼레일 시스템용 고압펌프의 성능 특성에 관한 연구 (A Study on the Performance Characteristic of Common Rail High Pressure Pump)

  • 이춘태
    • 동력기계공학회지
    • /
    • 제17권6호
    • /
    • pp.5-10
    • /
    • 2013
  • Diesel engines have the advantages of good fuel efficiency and low emissions. Therefore, car makers have been developed various kinds of diesel engine management system to clean up emissions while improving fuel efficiency. One of them is the common rail system. In the common rail system, diesel fuel is injected into the combustion chamber at ultra high pressures up to 1,800 bar to ensure more complete combustion for cleaner exhaust gas, and highly precise multiple injection reduces NOx emission, combustion noise and vibration. Generally speaking, common rail system consists of booster pump, high pressure pump, common rail, injectors, control valves, and sensors. The high pressure pump receives low pressure fuel from the booster pump and supply high pressure fuel to injectors through the high pressure common injection rail. Therefore, high pressure pump has an important role in common rail system. In this paper, we have investigated the performance of high pressure pump of common rail system.

고압 터보펌프용 연료펌프의 수력설계 및 성능 평가 (Hydraulic Design and Performance Evaluation of a Fuel Pump for a High Pressure Turbopump System)

  • 최범석;윤의수;오형우
    • 한국유체기계학회 논문집
    • /
    • 제8권2호
    • /
    • pp.31-38
    • /
    • 2005
  • A low NPSH and high pressure fuel pump has been designed for a turbopump system. The fuel pump has an axial inducer and a centrifugal impeller. A meanline method has been established for the preliminary design and performance prediction of pumps at design or off-design points. KeRC(Kelyish Research Center) carried out a model testing of the fuel pump with water as a working fluid at the reduced speed. Predicted performances by the method are shown to be in good agreement with experimental results for cavitating and non-cavitating conditions. The established meanline method can be used for the performance prediction and preliminary design of high speed pumps which have a inducer, impeller and volute. In the current study, the three dimensional viscous flow in the fuel pump was investigated through numerical computation. A modified design of the fuel pump was generated to improve pump performance by utilizing CFD results. The modified fuel pump was experimentally tested by ROTEM and KARI(Korea Aerospace Research Institute). The measured non-cavitating and cavitating performance showed a good agreement with designed performance.

전자제어 커먼레일 압축착화엔진용 고압연료펌프의 DME 적용 성능에 관한 연구 (A Study on the DME Application Performance of a High Pressure Fuel Pump for an Electric Controlled Common-rail Compression Ignition Engine)

  • 정재우;김남호;강정호;박상욱;이호길;최승규
    • 한국자동차공학회논문집
    • /
    • 제17권2호
    • /
    • pp.132-140
    • /
    • 2009
  • Recently, the interest in the development of high efficiency Diesel engine technology using alternative fuel has been on the rise and related studies are being performed. Therefore, the DME(Dimethyl Ether), an oxygen containing fuel as an alternative fuel for light oil that can be used for diesel engines since it generates very little smoke. But it is unavoidable that the modification of a fuel supply system in an engine to application of the DME fuel because of DME fuel properties. So, in this study, a DME high pressure pump for a common-rail fuel supply system has been composed and the test results of the pump have been presented. As the results of the tests, it is confirmed that DME pump inlet pressure, pump speed and common-rail pressure effects on the volumetric efficiencies of the pump. Finally, it is defined that the optimum plunger volume of a DME pump has to be extended to the minimum 150% compared to a Diesel pump plunger volume considering DME fuel properties and volumetric efficiencies characteristics at same specifications of the high pressure pump.

고압 터보펌프용 연료펌프의 수력설계 및 성능 평가 (Hydraulic Design and Performance Evaluation of a Fuel Pump for a High Pressure Turbopump System)

  • 최범석;윤의수;오형우
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.341-346
    • /
    • 2004
  • A low NPSH and high pressure fuel pump has been designed for a turbopump system. The fuel pump has an axial inducer and a centrifugal impeller. A meanline method has been established for the preliminary design and performance prediction of pumps at design or off-design points. KeRC carried out a model testing of the fuel pump with water as a working fluid at the reduced speed. Predicted performances by the method are shown to be in good agreement with experimental results for cavitating and non-cavitating conditions. The established meanline method can be used for the performance prediction and preliminary design of high speed pumps which have a inducer, impeller and volute. In the current study, the three dimensional viscous flow in the fuel pump was investigated through numerical computation. A modified design of the fuel pun was generated to improve pump performance by utilizing CFD results. The modified fuel pump was experimentally tested by ROTEM and KARI. The measured non-cavitating and cavitating performance showed a good agreement with designed performance.

  • PDF

DME를 연료로 하는 압축 착화 엔진용 고압연료 펌프의 성능 비교 연구 (A Comparative Study on the Performance of High Pressure Fuel Pumps for Compression Ignition Engines Fueled by DME)

  • 정재희;조원준;임옥택
    • 한국수소및신에너지학회논문집
    • /
    • 제34권1호
    • /
    • pp.59-68
    • /
    • 2023
  • In this study, the performance of high-pressure fuel pumps was compared to find a high-pressure pump suitable for dimethyl ether (DME) fuel, and to establish a database of basic data on flow rates. The use of DME in compression ignition engines can reduce pollutant emissions. The cetane value of DME is higher than that of diesel fuel. The physical properties of DME are similar to liquefied gasoline gas (LPG), and when pressurized at a pressure of 6 bar or more, it changes from gas to liquid. Two types of high pressure pumps used in this study were independent injection type pump and a wobble plate type pump. Two high-pressure pumps with different injection types were compared. By measuring and comparing the performance changes of the two high-pressure pumps, a pump suitable for DME was selected and performance improvement measures were proposed. The changed experimental conditions to measure the performance change of the high pressure pump were increased in the units of 100 to 1,000 rpm and 100 rpm, and the experiment was performed at common rail pressures 300 and 400 bar. it was confirmed that the DME inside the fuel supply system remained in a liquid state through temperature sensors, pressure sensors, and pressure gauges. As a result of the experiment, it was confirmed that the flow rate discharged from the high-pressure fuel pump increased as the motor rotational speed increased, and the flow rate of the high-pressure fuel pump

DME를 연료로 하는 고압펌프의 성능 및 내열 특성 평가 (Performance and Thermal Endurance Tests of a High Pressure Pump Fueled with DME)

  • 백범기;임옥택
    • 한국수소및신에너지학회논문집
    • /
    • 제31권1호
    • /
    • pp.89-95
    • /
    • 2020
  • The main scope of this paper is to see if the conventional pump can be properly used for a specific fuel, Di-methyl Ether (DME) despite of its low lubricity and high reactivity in the experimental conditions. A wobble plate type fuel pump was connected to the common rail to verify that the pump could deliver the fuel at the required pressure and resultantly DME could be used as fuel without modifying the original pump. At each required pressure (30 Mpa, 35 Mpa, 40 Mpa, 45 Mpa, and 50 Mpa), the pump met the pressure required by the common rail. In addition, pump performance experiments tended to follow the usual performance curve while the flow rate decreased as the pressure increased. The maximum flow rate of the pump was 470 kg/h at 30 Mpa and all measurements were taken with keeping DME temperature below 60℃.

연료 변경에 의한 연료분사펌프의 윤활 특성 (Lubrication Characteristics in Fuel Injection Pump with Variation of Fuel Oils)

  • 홍성호
    • Tribology and Lubricants
    • /
    • 제31권6호
    • /
    • pp.245-250
    • /
    • 2015
  • This study investigates the lubrication characteristics of fuel injection pumps with reference to different fuel oils. Medium-speed diesel engines use fuel oils with various viscosities, such as heavy fuel oil (HFO, which is a high-viscosity fuel oil) and light diesel oil (LDO, which is a low-viscosity fuel oil). When fuel oil with a low viscosity is used, both fuel oil and lubricating oil lubricate the system. Thus, the lubrication of the fuel injection pump is in a multi-viscosity condition when the fuel oil in use changes. We suggest three cases of multi-viscosity models, and divide the fuel injection pump into three lubrication sections: a, the new oil section; b, the mixed oil section; and c, the used oil section. This study compares the lubrication characteristics with variation of the multi-viscosity model, clearance. The volume of Section b does not affect the lubrication characteristics. The lubrication characteristics of the fuel injection pump are poor when high-viscosity fuel oil transfers to low-viscosity fuel oil. This occurs because the viscosity in the new oil section (i.e., Section a) dominates the lubrication characteristics of the fuel injection pump. However, the lubricant oil supply in the used oil section (i.e., Section c) can improve the lubrication characteristics in this condition. Moreover, the clearances of the stem and head significantly influence the lubrication characteristics when the fuel oil changes.

고온 환경에서의 전투차량용 BLDC 모터 신뢰성 향상에 관한 연구 (A Study on Reliability Improvement of BLDC Motor for Combat Vehicle in High Temperature Environment)

  • 윤효진;남윤욱;박경식
    • 한국기계가공학회지
    • /
    • 제17권5호
    • /
    • pp.97-102
    • /
    • 2018
  • Combat vehicles require high levels of maneuverability, firepower, armor, and operability. A high-performance power system is required for optimal maneuverability. The fuel pump which supplies fuel stably is very important to achieve this. The fuel pump consists of a pump part, a motor part, and a control part. It is equipped with a BLDC motor. Numerous failures of the fuel pump occurred during vehicle operation when exposed to vibration, shock, and high temperature. The cause of failure was confirmed to be stator slip of the BLDC motor. Stator slip is a consequence of the interference loss between the stator and the housing of the motor part in an high temperature environment. The failure of the fuel pump was solved through size control of the motor housing and the stator. We performed vibration testing at high temperature for verification. This study contributes to improving the reliability of combat vehicles.

터빈방식 펌프 LPi연료공급 시스템의 엔진 고온재시동 시 LPG 조성비에 따른 연료레일에서의 압력 및 온도특성에 관한 연구 (Study on the fuel rail temperature and pressure characteristics with LPG composition during hot restart condition of LPi engine with turbine type pump)

  • 이강주;김주원;명차리;박심수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3323-3328
    • /
    • 2007
  • Conventional LPG pump for Liquified Petroleum injection(LPi) engine has been adopted vane type. But the BLDC type fuel pump for LPi system has complicated structure and its price is high. Therefore, as a alternative, this study has mainly focused on the development of turbine type LPG pump which has lower cost and simple structure than conventional BLDC type. To verify the possibility of substitute the performance tests were performed for each fuel pump. The comparative items were pressure settling time, variation of fuel outlet temperature and engine performance of hot restart ability. As a result, performances of turbine type LPG pump were equivalent or high comparing to the BLDC type all over the tests for different fuel composition.

  • PDF

유량 제어 밸브 방식이 DME 고압 연료 펌프의 성능에 미치는 영향 (Effect of Flow Control Valve Type on the Performance of DME High Pressure Fuel Pump)

  • 신윤섭;이기수;김현철;정수진;박경용;서현규
    • 한국자동차공학회논문집
    • /
    • 제21권5호
    • /
    • pp.67-73
    • /
    • 2013
  • This experimental work described the effect of flow control valve type on the performance of wobble plate type fuel pump for the stable DME fuel supply. In order to study this, different four types of flow control valves (ITV, SCV, IMV and MPROP) were installed on the wobble plate fuel pump, and fuel flow rate, torque, and temperature variation of pump were investigated under various operating conditions by using pump performance test system. It was revealed that wobble plate type fuel pump worked well with ITV and SCV control valve, and the flow rate and torque of fuel pump was in proportion to the value of valve open duty. The maximum flow rate and torque of fuel pump were achieved around the 50% duty of control valve. Temperature variation at all pump measuring points were under $60^{\circ}C$ which is acceptable.