• Title/Summary/Keyword: High frequency injection

Search Result 229, Processing Time 0.027 seconds

Primary Current Generation for a Contactless Power Transfer System Using Free Oscillation and Energy Injection Control

  • Li, Hao Leo;Hu, Aiguo Patrick;Covic, Grant Anthony
    • Journal of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.256-263
    • /
    • 2011
  • This paper utilizes free oscillation and energy injection principles to generate and control the high frequency current in the primary track of a contactless power transfer system. Here the primary power inverter maintains natural resonance while ensuring near constant current magnitude in the primary track as required for multiple independent loads. Such energy injection controllers exhibit low switching frequency and achieve ZCS (Zero Current Switching) by detecting the high frequency current, thus the switching stress, power losses and EMI of the inverter are low. An example full bridge topology is investigated for a contactless power transfer system with multiple pickups. Theoretical analysis, simulation and experimental results show that the proposed system has a fast and smooth start-up transient response. The output track current is fully controllable with a sufficiently good waveform for contactless power transfer applications.

Improvement of engine noise causing rough sound quality (거친 청감을 유발하는 엔진소음 개선 방향 고찰)

  • Jung, Insoo;Kim, Sukzoon;Cho, Teockhyeong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.4
    • /
    • pp.242-247
    • /
    • 2018
  • The automotive industry is making various efforts to cope with ever-increasing exhaust emissions and fuel economy regulations. However, this often results in degraded NVH (Noise, Vibration, and Harshness) performance. For example, we proposed the causes and improvements for the noise generated by the high-pressure pump noise of a gasoline engine, the change of acceleration noise due to dual injection of MPI (Multi-Point Injection) and GDI (Gasoline Direct Injection), the noise of a gasoline turbocharger, and the combustion noise deteriorated due to the injection parameters calibration in a diesel engine. Since these noises are caused by the high frequency noise, and the driver feels the rough sound quality, efforts to reduce them with proper NVH measures are indispensable.

Experimental Study on the Performance Characteristics of an Injection Type Scroll Compressor (인젝션용 스크롤 압축기의 성능특성에 관한 실험적 연구)

  • Cho, Hong-Hyun;Kim, Yong-Chan
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.193-198
    • /
    • 2000
  • For an inverter-driven compressor, the discharge temperature increased with a rise of frequency, Therefore, it is necessary to control the discharge temperature at high frequencies in order to obtain system reliability and efficiency. This paper describes the effects of liquid injection system on the performance of an inverter-driven scroll compressor. Experiments were performed at ASHRAE-T conditions. Frequency was altered from 45 to 105Hz. As results of the present work, the refrigerant discharge temperature fur the injection system was dropped approximately $10{\sim}20^{\circ}C$ as compared to those for the non-injection system. The COP of the compressor was improved approximately $0.8{\sim}9.3%$ at high frequencies(75, 90, and 105 Hz).

  • PDF

Sensorless Control of a PMSM at Low Speeds using High Frequency Voltage Injection

  • Yoon Seok-Chae;Kim Jang-Mok
    • Journal of Power Electronics
    • /
    • v.5 no.1
    • /
    • pp.11-19
    • /
    • 2005
  • This paper describes the two control techniques to perform the sensorless vector control of a PMSM by injecting the high frequency voltage to the stator terminal. The first technique is the estimation algorithm of the initial rotor position. A PMSM possesses the saliency which produces the ellipse of the stator current when the high frequency voltage is injected into the motor terminal. The major axis angle of the current ellipse gives the rotor position information at a standstill. The second control technique is a sensorless control algorithm that injects the high frequency voltage to the stator terminal in order to estimate the rotor position and speed. The rotor position and speed for sensorless vector control is calculated by appropriate signal processing to extract the position information from the stator current at low speeds or standstill. The proposed sensorless algorithm using the double-band hysteresis controller exhibits excellent reference tracking and increased robustness. Experimental results are presented to verify the feasibility of the proposed control schemes. Speed, position estimation and vector control were carried out on the floating point processor TMS320VC33.

An investigation into Weldline Strength According to Induction Heating Conditions (유도가열 조건에 따른 사출성형품 웰드부의 강도 고찰)

  • Son, Dong-Hwi;Seo, Young-Soo;Park, Keun
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.441-444
    • /
    • 2009
  • Weldlines are generated during the injection molding process when two or more melt flows are brought into contact. At the welded contact region, a 'V'-shaped notch is formed on the surface of the molded part. This 'V'-notch deteriorates not only surface appearance but also mechanical strength of the molded part. To eliminate or reduce weldlines so as to improve the weldline strength, the mold temperature at the corresponding weld locations should be maintained higher than the glass transition temperature of the resin material. The present study implements high-frequency induction heating in order to rapidly raise mold surface temperature without a significant increase in cycle time. This induction heating enables to local mold heating so as to eliminate or reduce weldlines in an injection-molded plastic part. The effect of induction heating conditions on the weldline strength and surface appearance of an injection-molded part is investigated.

  • PDF

Characteristic analysis of the resonant current injection type high frequency resonant inverter using ZVS (ZVS를 이용한 공진전류 주입형 고주파 공진 인버터의 특성해석)

  • Won, Jae-Sun;Kim, Hae-Jun;Cho, Gyu-Pan;Kim, Dong-Hee;Bae, Young-Ho;Min, Byung-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1038-1040
    • /
    • 2001
  • A half-bridge type resonant current injection type high frequency resonant inverter using ZVS(Zero-Voltage-Switching) used as power source of induction heating at high frequency is presented in this paper. This proposed inverter can reduce distribution of the switching current because of using the current of serial resonant circuit to the input current of the parallel one. The analysis of the proposed circuit is generally described by using the normalized parameters, the principle of basic operating and the its characteristics are estimated by the parameters such as switching frequency and load resistance. According to the calculated characteristics value, this paper proves the validity of theoretical analysis through the Pspice.

  • PDF

Electronic Ballast Using a Symmetrical Half-bridge Inverter Operating at Unity-Power-factor and High Efficiency

  • Suryawanshi Hiralal M.;Borghate Vijay B.;Ramteke Manojkumar R.;Thakre Krishna L.
    • Journal of Power Electronics
    • /
    • v.6 no.4
    • /
    • pp.330-339
    • /
    • 2006
  • This paper deals with novel electronic ballast based on single-stage power processing topology using a symmetrical half-bridge inverter and current injection circuit. The half-bridge inverter drives the output parallel resonant circuit and injects current through the power factor correction (PFC) circuit. Because of high frequency current injection and high frequency modulated voltage, the proposed circuit maintains the unity power factor (UPF) with low THD even under wide variation in ac input voltage. This circuit needs minimum and lower sized components to achieve the UPF and high efficiency. This leads to an increase in reliability of ballast at low cost. Furthermore, to reduce cost, the electronic ballast is designed for two series-connected fluorescent lamps (FL). The analysis and experimental results are presented for ($2{\times}36$ Watt) fluorescent lamps operating at 50 kHz switching frequency and input line voltage (230 V, 50 Hz).

Study on an Optimal Control Method for Energy Injection Resonant AC/AC High Frequency Converters

  • Su, Yu-Gang;Dai, Xin;Wang, Zhi-Hui;Tang, Chun-Sen;Sun, Yue
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.197-205
    • /
    • 2013
  • In energy injection resonant AC-AC converters, due to the low frequency effect of the AC input envelope and the low energy injection losses requirement, the constant and steady control of the high frequency AC output envelope is still a problem that has not been solved very well. With the aid of system modeling, this paper analyzes the mechanism of the envelope pit on the resonant AC current. The computing methods for the critical damping point, the falling time and the bottom value of the envelope pit are presented as well. Furthermore, this paper concludes the stability precondition of the system AC output. Accordingly, an optimal control method for the AC output envelope is put forward based on the envelope prediction model. This control method can predict system responses dynamically under different series of control decisions. In addition, this control method can select best series of control decisions to make the AC output envelope stable and constant. Simulation and experimental results for a contactless power transfer system verify the control method.

Penetration and Breakup Characteristics of Pulsed Liquid Jets in Subsonic Crossflowse (아음속 수직분사제트에서의 가진 분무의 분무 특성연구)

  • Kim, Jin-Ki;Song, Jin-Kwan;Kim, Min-Ki;Hwang, Yong-Seok;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.83-88
    • /
    • 2007
  • The spray characteristics and liquid column penetration of steady and pulsed injection measurements have been experimentally studied using high speed camera in liquid jets injected into subsonic crossflow. The objectives of this research are to comparison the spray characteristics of steady injection with pulsed injection. Moreover. the effects of frequency are also studied. As the result, This research has been showed that pulsed injection has different penetration compared with steady injection.

  • PDF