• Title/Summary/Keyword: High frequency inductor

Search Result 294, Processing Time 0.026 seconds

Electric and Magnetic Properties of NCZF for High Frequency Chip-Inductor (고주파 Chip-Inductor용 NCZF 전자기적 특성)

  • 정승우;김태원;김성수;백승철;최우성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.80-83
    • /
    • 1999
  • We have studied properties(crystal structure, density, absorption, contraction, initial permeability, and permeability) of Ni$_{0.175-x}$Cu$_{x}$Zn$_{0.33}$Fe$_{0.495}$ (x=0~0.175) ferrites with various NiO and CuO, because of development of materials for high frequency inductor. The XRD peaks of all of samples were observed only spine이 phase. As a results of the density, absorption rate, and shrinkage rate, the grain growth progressed rapidly in x=0.1 at 95$0^{\circ}C$, x=0.075 at 105$0^{\circ}C$, and x=0.025 at 115$0^{\circ}C$ for 3 hours. Initial permeability increased with increasing CuO concentration until x=0.1, and then decreased. The complex permeability as a function frequency were high values at sintered 105$0^{\circ}C$ fotr3 hours in x=0.075, 0.1., 0.1.1.

  • PDF

A Study on Development of High Q Active Inductor to be Used in High Frequency Band (높은 주파수대에서 사용 가능한 고품질 능동 인덕터 개발에 관한 연구)

  • 최종은;이상호;박정훈;나극환;박익모;신철재
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.3
    • /
    • pp.445-453
    • /
    • 2000
  • In this paper, the method of designing an active inductor for MMIC is proposed. The proposed tunable active inductor is composed of a cascade FET with feedback capacitors and resistors. Because of a very low series resistance in the proposed inductor, a very high Q factor can be obtained. Also it has an excellent characteristics suitable for high frequency band. The inductance value can be changed by controlling feedback capacitors, resistors and a bias voltage respectively. When the feedback resistor and parallel resistor within circuits are varied, the inductance value is changed from 0.2 nH to 1.7 nH in the range 1 to 15 GHz. Also we designed bandpass filter using the proposed active inductor and it shows the insertion loss of 0.4 dB and return loss, 20 dB.

  • PDF

Design of a Multiband CMOS VCO using Switched Bondwire Inductor (스위치드 본드와이어 인덕터를 이용한 다중대역 CMOS 전압제어발진기 설계)

  • Ryu, Seonghan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.6
    • /
    • pp.231-237
    • /
    • 2016
  • This paper presents a multiband low phase noise CMOS VCO with wide frequency tunability using switched bondwire inductor bank. The combination of bondwire inductor and CMOS switch transistor enhances frequency tunability and improves phase noise characteristics. The proposed multiband VCO operates from 2.3GHz to 6.3GHz with phase noise of -136dBc/Hz and -122dBc/Hz at 1 MHz offset frequency, respectively. Switched bondwire inductor bank shows high quality factor(Q) at each frequency band, which allows better tradeoff between phase noise and power consumption. The proposed VCO is designed in TSMC 0.18um CMOS process and consumes 7.2 mW power resulting in figure of merit(FOM) of -189.3dBc/Hz at 1 MHz offset from 6GHz carrier frequency.

Design of T/R Switch Using LTCC Technology

  • Sim, Sung-Hun;Kang, Chong-Yun;Park, Ji-Won;Yoon, Young-Joong;Kim, hyun-Jai;Park, Hyung-Wook;Yoon, Seok-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.4
    • /
    • pp.375-379
    • /
    • 2003
  • In this paper, a novel design of multilayer ceramic-based Transmit/Receive (T/R) switch using Low Temperature Co-fired Ceramic (LTCC) technology have been presented. Compact T/R switch has been designed by transforming quarter-wave transmission line to its lumped equivalent circuit. Especially, high-Q three dimensional inductors with double strip have been proposed and incorporated. The proposed inductor has been modeled by multi-conductor coupled lines. A measured inductor quality factor (Q) of 80 and a Self-Resonance Frequency (SRF) of 6.6 GHz have been demonstrated. The inductor library has been incorporated into the design of WCDMA T/R switch.

High Performance On-Chip Integrable Inductor for RF Applications

  • Lee, J.Y.;Kim, J.H.;Kim, M.J.;Moon, S.S.;Kim, I.H.;Lee, Y.H.;Yook, Jong-Gwan;Kukjin Chun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.1
    • /
    • pp.11-14
    • /
    • 2003
  • The high Q(quality factor) suspended spiral inductors were fabricated on the silicon substrate by 3D surface micromachined process. The integration of 2.4GHz VCO has been performed by fabricating suspended spiral inductor of the top of CMOS VCO circuit. The phase noise of VCO integrated MEMS inductor is 93.5 dBc/Hz at 100kHz of offset frequency.

  • PDF

Development of High-Quality LTCC Solenoid Inductor using Solder ball and Air Cavity for 3-D SiP

  • Bae, Hyun-Cheol;Choi, Kwang-Seong;Eom, Yong-Sung;Kim, Sung-Chan;Lee, Jong-Hyun;Moon, Jong-Tae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.4
    • /
    • pp.5-8
    • /
    • 2009
  • In this paper, a high-quality low-temperature co-fired ceramic (LTCC) solenoid inductor using a solder ball and an air cavity on a silicon wafer for three-dimensional (3-D) system-in-package (SiP) is proposed. The LTCC multi-layer solenoid inductor is attached using Ag paste and solder ball on a silicon wafer with the air cavity structure. The air cavity is formed on a silicon wafer through an anisotropic wet-etching technology and is able to isolate the LTCC dielectric loss which is equivalent to a low k material effect. The electrical coupling between the metal layer and the LTCC dielectric layer is decreased by adopting the air cavity. The LTCC solenoid inductor using the solder ball and the air cavity on silicon wafer has an improved Q factor and self-resonant frequency (SRF) by reducing the LTCC dielectric resistance and parasitic capacitance. Also, 3-D device stacking technologies provide an effective path to the miniaturization of electronic systems.

  • PDF

A Novel High Step-Up Converter with a Switched-Coupled-Inductor-Capacitor Structure for Sustainable Energy Systems

  • Liu, Hongchen;Ai, Jian;Li, Fei
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.436-446
    • /
    • 2016
  • A novel step-up DC-DC converter with a switched-coupled-inductor-capacitor (SCIC) which successfully integrates three-winding coupled inductors and switched-capacitor techniques is proposed in this paper. The primary side of the coupled inductors for the SCIC is charged by the input source, and the capacitors are charged in parallel and discharged in series by the secondary windings of the coupled inductor to achieve a high step-up voltage gain with an appropriate duty ratio. In addition, the passive lossless clamped circuits recycle the leakage energy and reduce the voltage stress on the main switch effectively, and the reverse-recovery problem of the diodes is alleviated by the leakage inductor. Thus, the efficiency can be improved. The operating principle and steady-state analyses of the converter are discussed in detail. Finally, a prototype circuit at a 50 kHz switching frequency with a 20-V input voltage, a 200-V output voltage, and a 200-W output power is built in the laboratory to verify the performance of the proposed converter.

A New Three Winding Coupled Inductor-Assisted High Frequency Boost Chopper Type DC-DC Power Converter with a High Voltage Conversion Ratio

  • Ahmed Tarek;Nagai Shinichiro;Hiraki Eiji;Nakaoka Mutsuo
    • Journal of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.99-103
    • /
    • 2005
  • In this paper, a novel circuit topology of a three-winding coupling inductor-assisting a high-frequency PWM boost chopper type DC-DC power converter with a high boost voltage conversion ratio and low switch voltage stress is proposed for the new energy interfaced DC power conditioner in solar photovoltaic and fuel cell generation systems. The operating principle in a steady state is described by using its equivalent circuits under the practical condition of energy processing of a lossless capacitive snubber. The newly-proposed power MOSFET boost chopper type DC-DC power converter with the three-winding coupled inductor type transformer and a single lossless capacitor snubber is built and tested for an output power of 500W. Utilizing the lower voltage and internal resistance power MOSFET switch in the proposed PWM boost chopper type DC-DC power converter can reduce the conduction losses of the active power switch compared to the conventional model. Therefore, the total actual power conversion efficiency under a condition of the nominal rated output power is estimated to be 81.1 %, which is 3.7% higher than the conventional PWM boost chopper DC power conversion circuit topology.

Feasibility Study of Tapped Inductor Filter Assisted Soft-Switching PWM DC-DC Power Converter

  • Moisseev S.;Sato S;Hamada S;Wakaoka M
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.231-234
    • /
    • 2003
  • This paper presents a novel high frequency transformer linked full-bridge type soft-switching phase-shift PWM control scheme DC-DC power converter, which can be used as power conditioner fur small-scale fuel cell power generation system. Using full-bridge soft-switching DC-DC converter topology makes possible to use low voltage high performance MOSFETs to achieve high efficiency of the power conditioner. A tapped inductor filter is implemented in the proposed soft-switching converter topology to achieve soft-switching PWM constant high frequency operation for a wide load variation range. to minimize circulating and idling currents without using additional resonant circuit and auxiliary power switching devices. The practical effectiveness of the proposed soft-switching DC-DC converter is verified in laboratory level experiment with 1 kW 100kHz breadboard setup using power MOSFETs. Actual efficiency of 94-96$\%$ is obtained for the wide load range

  • PDF

A Load Sharing Method of Parallel-connected Two Interleaved CrM Boost PFC Converters (병렬 연결된 두 개의 Interleaved CrM Boost PFC 컨버터의 부하 공유 방법)

  • Kim, Moon-Young;Kang, Shinho;Kang, Jeong-Il;Han, Jonghee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.1
    • /
    • pp.53-58
    • /
    • 2021
  • Operation of the interleaved Boost PFC converter in Critical Conduction Mode (CrM) shows the advantages of high efficiency and good EMI characteristics owing to the valley switching of FET. However, when it is designed for a highly pulsating load, operation at a relatively high frequency is inevitable at non-pulsating typical load condition, resulting in efficiency degradation. Moreover, the physical size of the inductor becomes problematic because of the nature of the CrM operation, where the inductor peak current is about two times the inductor average current, thereby requiring high DC-bias characteristics, which is worse when the output power is high. In this study, a new parallel driving method of two sets of interleaved boost PFC converters for highly pulsating high-power application is proposed. The proposed method does not require any additional load-sharing controller, resulting in high efficiency and smaller inductor size.