• Title/Summary/Keyword: High frequency components

Search Result 990, Processing Time 0.028 seconds

Development of High Frequency Active Filter for Multimedia (멀티미디어용 고주파 Active Filter개발에 관한 연구)

  • 윤종남
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 2002
  • The purpose of this work is to develop High-Frequency Active Filter and super-miniaturation technology(SMD Type) of Filter which are essential for the key R/F Microwave components in the Mobile telecommunication system. The cut-off frequency of high frequency active filter for multimedia is 2.5 MHz, the gain is 0.5dB at 100 kHz, the passband ripple is 1.2 dB max at 100 kHz~2.0 kHz, GDT is 60 nsec at 100 kHz-2.0 MHz, the attenuation is 40 dB min at 3.75 MHz.

  • PDF

High-Frequency Forward Transformer Linked PWM DC-DC Power Converter with Zero Voltage Switching and Zero Current Switching Bridge Legs

  • Moisseev, Serguei;Hamada, Satoshi;Ishitobi, Manabu;Hiraki, Eiji;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.2 no.4
    • /
    • pp.278-287
    • /
    • 2002
  • A novel zero-voltage and zero-current switching PWM DC-DC converter with lowered conduction losses is presented in this paper. A new double two-switch forward high frequency transformer type soft-switching converter topology is developed to minimize circulating currents occurs during freewheeling period. This converter has advantages as less number of the components, simple control principle under constant operation frequency, free of transformer Imbalance effect. The principle of operation is illustrated with steady-state analysis. Moreover, the effectiveness of the proposed converter topology is verified by implementation of a 500w-100kHz breadboard using IGBTs.

An Experimental Study on Minimum Ignition Energy of Flammable Mixtures by Electric Power Frequency (전원주파수의 변화에 따른 인화성 혼합기체의 최소점화에너지에 관한 실험 연구)

  • Choi, Sang-Won
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.4
    • /
    • pp.26-32
    • /
    • 2012
  • With a progress of electrical and electronic technology, radio-frequency including high frequency components are widely to various industrial installations. Some of them are used in hazardous locations where explosive or flammable gases exist. As a result, ignition of such gases may be induced by a spark discharge when the radio frequency circuits are switched on or off. The purpose of this study is to investigate the ignition hazards of some kind of flammable mixtures based on the IEC 60079-11 publication. In this experiment, we used a high frequency resistive circuit which consists of a co-axial cable, a 20 ${\Omega}$, 30 ${\Omega}$, 40 ${\Omega}$ and 50 ${\Omega}$ resistor and two kind of power amplifier with frequency range up to almost 1 MHz and 50 MHz. Experimental results show that the ignition of the acetyleneair, ethylene-air mixtures and methane-air mixtures due to spark discharge depends primarily on the frequency of the power source in the resistive circuit the minimum ignition voltage increases gradually with the increase of the frequency.

ZnO/3C-SiC/Si(100) 다층박막구조에서의 표면탄성파 전파특성

  • 김진용;정훈재;나훈주;김형준
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.80-80
    • /
    • 2000
  • Surface acoustic wave (SAW) devices have become more important as mobile telecommunication systems need h호-frrequency, low-loss, and down-sized components. Higher-frequency SAW divices can be more sasily realized by developing new h호-SAW-velocity materials. The ZnO/diamond/Si multilasyer structure is one of the most promising material components for GHz-band SAW filters because of its SAW velocity above 10,000 m/sec. Silicon carbide is also a potential candidate material for high frequency, high power and radiation resistive electronic devices due to its superior mechanical, thermal and electronic properties. However, high price of commercialized 6- or 4H-SiC single crystalline wafer is an obstacle to apply SiC to high frequency SAW devices. In this study, single crystalline 3C-SiC thin films were grown on Si (100) by MOCVD using bis-trimethylsilymethane (BTMSM, C7H20Si7) organosilicon precursor. The 3C-SiC film properties were investigated using SEM, TEM, and high resolution XRD. The FWHM of 3C-SiC (200) peak was obtained 0.37 degree. To investigate the SAW propagation characteristics of the 3C-SiC films, SAW filters were fabricated using interdigital transducer electrodes on the top of ZnO/3C-SiC/Si(100), which were used to excite surface acoustic waves. SAW velocities were calculated from the frequency-response measurements of SAW filters. A generalized SAW mode. The hard 3C-SiC thin films stiffened Si substrate so that the velocities of fundamental and the 1st mode increased up to 5,100 m/s and 9,140 m/s, respectively.

  • PDF

Development of an Algorithm for Detecting High Impedance Fault in Low Voltage DC Distribution System using Accumulated Energy of Fault Current (고장전류의 누적 에너지를 이용한 저압직류 배전계통의 고저항 지락고장 검출 알고리즘 개발)

  • Oh, Yun-Sik;Noh, Chul-Ho;Kim, Doo-Ung;Gwon, Gi-Hyeon;Han, Joon;Kim, Chul-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.5
    • /
    • pp.71-79
    • /
    • 2015
  • Recently, new Low Voltage DC (LVDC) power distribution systems have been constantly researched as uses of DC in end-user equipment are increased. As in conventional AC distribution system, High Impedance Fault (HIF) which may cause a failure of protective relay can occur in LVDC distribution system as well. It, however, is hard to be detected since change in magnitude of current due to the fault is too small to detect the fault by the protective relay using overcurrent element. In order to solve the problem, this paper presents an algorithm for detecting HIF using accumulated energy in LVDC distribution system. Wavelet Singular Value Decomposition (WSVD) is used to extract abnormal high frequency components from fault current and accumulated energy of high frequency components is considered as the element to detect the fault. LVDC distribution system including AC/DC and DC/DC converter is modeled to verify the proposed algorithm using ElectroMagnetic Transient Program (EMTP) software. Simulation results considering various conditions show that the proposed algorithm can be utilized to effectively detect HIF.

Technological Trends of C-/X-/Ku-band GaN Monolithic Microwave Integrated Circuit for Next-Generation Radar Applications (차세대 레이더용 C-/X-/Ku-대역 GaN 집적회로 기술 동향)

  • Ahn, H.K.;Lee, S.H.;Kim, S.I.;Noh, Y.S.;Chang, S.J.;Jung, H.U.;Lim, J.W.
    • Electronics and Telecommunications Trends
    • /
    • v.37 no.5
    • /
    • pp.11-21
    • /
    • 2022
  • GaN (Gallium-Nitride) is a promising candidate material in various radio frequency applications due to its inherent properties including wide bandgap, high carrier concentration, and high electron mobility/saturation velocity. Notably, AlGaN/GaN heterostructure field effect transistor exhibits high operating voltage and high power-density/power at high frequency. In next-generation radar systems, GaN power transistors and monolithic microwave integrated circuits (MMICs) are significant components of transmitting and receiving modules. In this paper, we introduce technological trends for C-/X-/Ku-band GaN MMICs including power amplifiers, low noise amplifiers and switch MMICs, focusing on the status of GaN MMIC fabrication technology and GaN foundry service. Additionally, we review the research for the localization of C-/X-/Ku-band GaN MMICs using in-house GaN transistor and MMIC fabrication technology. We also discuss the results of C-/X-/Ku-band GaN MMICs developed at Defense Materials and Components Convergence Research Department in ETRI.

Advanced DC Offset Removal Filter of High-order Configuration (고차 구성의 개선된 직류 옵셋 제거 필터)

  • Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.1
    • /
    • pp.12-17
    • /
    • 2013
  • Fault currents are expressed as a combination of harmonic components and exponentially decaying DC offset components, during the occurrence of fault in power system. The DC offset components are included, when the voltage phase angle of fault inception is closer to $0^{\circ}$ or $180^{\circ}$. The digital protection relay should be detected quickly and accurately during the faults, despite of the distortions of relaying signal by these components. It is very important to implement the robust protection algorithm, that is not affected by DC offset and harmonic components, because most relaying algorithms extract the fundamental frequency component from distorted relaying signal. So, In order to high performance in relaying, advanced DC offset removal filter is required. In this paper, a new DC offset removal filter, which is no need to preset a time constant of power system and accurately estimate the DC offset components with one cycle of data, is proposed, and compared with the other filter. In order to verify performance of the filter, we used collecting the current signals after synchronous machine modeling by ATPDraw5.7p4 software. The results of simulation, the proposed DC offset removal filter do not need any prior information, the phase delay and gain error were not occurred.

Input Current Ripple Reduction Algorithm for Interleaved DC-DC Converter (다상 DC-DC 컨버터의 입력 전류 리플 저감 제어 알고리즘)

  • Joo, Dong-Myoung;Kim, Dong-Hee;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.220-226
    • /
    • 2014
  • Input current ripple and harmonic components of the power device are main causes of electromagnetic interference (EMI). Although the discontinuous conduction mode (DCM) operation can reduce harmonic components of the power device by reducing reverse recovery current of diode and turn-off voltage spikes of the switch, input current ripple increases due to high peak to peak inductor current. Therefore, in this paper, frequency control algorithm is proposed to reduce the input current ripple of DCM operated interleaved boost converter. In the proposed algorithm, duty ratio is fixed either 0.33 or 0.67 to minimize the input current ripple and the switching frequency is controlled according to operating conditions. 600 W 3-phase interleaved boost converter prototype system is built to verify proposed algorithm.

A Study on the Fault Detection and Discrimination of Transmission Line using Fault-generated High Frequency Signals (고주파를 이용한 송전선로의 사고 검출 및 판별에 관한 연구)

  • Lee, Dong-Jun;Kim, Chul-Hwan;Kim, Il-Dong
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.8
    • /
    • pp.924-931
    • /
    • 1999
  • Most conventional protection relays are based on processing information in the spectrum that is close to or at power frequency. It is, however, widely known that faults on transmission lines produce frequency components of a wide range. High frequency signals caused by sudden changes in system voltage that occurs in the immediate post-fault period are generally outside the bandwidth of receptibility of most protection scheme. In this respect, a specially designed stack tuner is connected to the coupling capacitor of CVT, in order to capture the high frequency signals. Digital signal processing is then applied to the captured information to determine whether the fault is inside or outside the protected zone, and to discriminate the fault type. In this paper, modal transform is not applied to fault generated signals, because signals which are converted by modal transform are not have an information of each phase any longer. Instead, using peak voltage value of data windows is able to discriminate fault type. The paper concludes by presenting fault detection and discrimination of various faults on transmission line which are based on extensive simulation studies carried out on a typical 154kV Korean transmission line, using the EMTP software.

  • PDF

Electronic Ballast Using a Symmetrical Half-bridge Inverter Operating at Unity-Power-factor and High Efficiency

  • Suryawanshi Hiralal M.;Borghate Vijay B.;Ramteke Manojkumar R.;Thakre Krishna L.
    • Journal of Power Electronics
    • /
    • v.6 no.4
    • /
    • pp.330-339
    • /
    • 2006
  • This paper deals with novel electronic ballast based on single-stage power processing topology using a symmetrical half-bridge inverter and current injection circuit. The half-bridge inverter drives the output parallel resonant circuit and injects current through the power factor correction (PFC) circuit. Because of high frequency current injection and high frequency modulated voltage, the proposed circuit maintains the unity power factor (UPF) with low THD even under wide variation in ac input voltage. This circuit needs minimum and lower sized components to achieve the UPF and high efficiency. This leads to an increase in reliability of ballast at low cost. Furthermore, to reduce cost, the electronic ballast is designed for two series-connected fluorescent lamps (FL). The analysis and experimental results are presented for ($2{\times}36$ Watt) fluorescent lamps operating at 50 kHz switching frequency and input line voltage (230 V, 50 Hz).