• Title/Summary/Keyword: High frequency component

Search Result 645, Processing Time 0.03 seconds

Voltage and frequency dependent electrical properties in organic light-emitting diodes of $ITO/Alq_3/Al$ ($ITO/Alq_3(60nm)/Al$의 유기 발광 소자에서 바이어스 전압과 주파수에 따른 전기적 특성)

  • Chung, Dong-Hoe;Oh, Hyun-Seok;Hur, Sung-Woo;Lee, Won-Jae;Song, Min-Jong;Lee, Joon-Ung;Kim, Tae-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.464-468
    • /
    • 2003
  • Complex impedances with frequency and voltage variation were analyzed in $ITO/Alq_3(60nm)/Al$ device structure. At low frequency, complex impedance is mostly expressed by resistive component, and at the high frequency by resistance and capacitive component. We have also evaluated resistance, capacitance and permittivity.

  • PDF

High Frequency Inverter for Induction Heating with Multi-Resonant Zero Current Switching (다중공진 영전류 스위칭을 이용한 고주파 유도가열용 인버터)

  • Ra, B.H.;Suh, K.Y.;Lee, H.W.;Kim, K.T.
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.38-40
    • /
    • 2002
  • In the case of conventional high frequency inverter, with damage of switch by surge voltage when switch gets into compulsion extinction by load accident and so on because reactor is connected by series to switch, or there was problem of conduction loss by reactor's resistivity component, Also, it has controversial point of that can not ignore conduction loss of switch in complete work kind action of soft switching. In this paper, as high frequency induction heating power supply, we propose half bridge type multi resonance soft switching high frequency inverter topology that can realize high amplitude operation of load current with controlling switch current by multiplex resonance, mitigating surge voltage when switch gets into compulsion extinction and to be complete operation of zero current switching by opposit parallel connected reactor to inverter switch. and do circuit analysis for choice of most suitable circuit parameter of circuit

  • PDF

Optimal Design of High Frequency Transformer for 150W Class Module-Integrated Converter

  • Yoo, Jin-Hyung;Jung, Tae-Uk
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.288-294
    • /
    • 2015
  • Recently, the module-integrated converter has shown an interest in the photovoltaic generation system. In this system, the high frequency transformer should be compact and efficient. The proposed method is based on the correlation characteristic between the copper and core loss to minimize the loss of transformer. By sizing an effective cross-sectional area and window area of core, the amount of loss is minimized. This paper presents the design and analysis of high frequency transformer by using the 3D finite element model coupled with DC-DC converter circuit for more accurate analysis by considering the nonlinear voltage and current waveforms in converter circuit. The current waveform in each winding is realized by using the ideal DC voltage source and switching component. And, the thermal analysis is performed to satisfy the electrical and thermal design criteria.

Analysis of a new Soft-Switching High-Frequency Inverter for High Current (대전류화를 위한 새로운 소프트 스위칭 고주파 인버터의 회로 해석)

  • Lee, E.Y.;Ra, B.H.;Suh, K.Y.;Kwon, S.K.;Lee, H.W.;Kwak, D.K.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1187-1189
    • /
    • 2002
  • In the case of an existing high frequency inverter is became forced extinction by quick load change, due to be connected with series inductor on switch, it is destroyed or is generated conduction loss by resistance component in reactor. And, In the operation of high current with a soft switching, conduction loss can not neglect. In this paper, for the high current power source, we make sure of soft swtching operation and reducing surge when the forced extinction by using a connected switch with series inductor. Also, we poropos a topology of the half bridge type high frequency inverter that can be realized high amplitude operation of the load current. And, analyze the circuit to decide an opmtial circuit parameter.

  • PDF

Variations of heart rate variability under varied physical environmental factors

  • Ishibashi, Keita;Yasukouchi, Akira
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2001.11a
    • /
    • pp.91-95
    • /
    • 2001
  • In this study, we estimated the behavior of the diversity of physiological responses under varied physical environmental factors by measuring variations of heart rate variability (HRV), an index of activity of cardiac autonomic control. Seven healthy young male adults consented and participated in the study. The environmental conditions consisted of thermal, lighting, and acoustic conditions. Two components of HRV were measured. one was the low frequency (LF) component of HRV, which provided a quantitative index of the sympathetic and parasympathetic (vagal) activities controlling the heart rate (HR). The other component measured was the high frequency (HF) component, which provided an index of the vagal tone. The percent contribution of physical environmental factors to the variations in HRV indices were calculated by ANOVA. The contribution of physical environmental factors to the variations in HR was higher than the contribution of HF and LF. However, the contribution of these factors was lower than the contribution related with individual difference in all indices. This result showed that the individual diversity of physiological responses is not a negligible quantity.

  • PDF

Digital Relaying Algorithm for Power Transformer Protection using Fuzzy Logic Approach

  • Park, Chul-Won;Shin, Myong-Chul
    • KIEE International Transactions on Power Engineering
    • /
    • v.2A no.4
    • /
    • pp.153-159
    • /
    • 2002
  • Power transformer protective relay should block the tripping during magnetizing inrush and rapidly operate the tripping during internal faults. Recently, the frequency environment of power system has been made more complicated and the quantity of 2nd frequency component in inrush state has been decreased because of the improvement of core steel. And then, traditional approaches will likely be maloperate in the case of magnetizing inrush with low second harmonic component and internal faults with high second harmonic component. This paper proposes a new relaying algorithm to enhance the fault detection sensitivities of conventional techniques by using a fuzzy logic approach. The proposed fuzzy based relaying algorithm consists of flux-differential current derivative curve, harmonic restraint, and percentage differential characteristic curve. The proposed relaying was tested with relaying signals obtained from EMTP simulation package and showed a fast and accurate trip operation.

Frequency analysis of GPS data for structural health monitoring observations

  • Pehlivan, Huseyin
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.185-193
    • /
    • 2018
  • In this study, low- and high-frequency structure behaviors were identified and a systematic analysis procedure was proposed using noisy GPS data from a 165-m-high tower in ${\dot{I}}stanbul$, Turkey. The raw GPS data contained long- and short-periodic position changes and noisy signals at different frequencies. To extract the significant results from this complex dataset, the general structure and components of the GPS signal were modeled and analyzed in the time and frequency domains. Uncontrolled jumps and deviations involving the signal in the time domain were pre-filtered. Then, the signal was converted to the frequency domain after applying low- and high-pass filters, and the frequency and periodic component values were calculated. The spectrum of the tower motion obtained from the filtered GPS data had dominant peaks at a low frequency of $1.15572{\times}10-4Hz$ and a high frequency of 0.16624 Hz, consistent with two equivalent GPS datasets. Then, the signal was reconstructed using inverse Fourier transform with the dominant low frequency values to obtain filtered and interpretable clean signals. With the proposed sequence, processing of noisy data collected from the GPS receivers mounted very close to the structure is effective in revealing the basic behaviors and features of buildings.

Seismic Response Amplification Factors of Nuclear Power Plants for Seismic Performance Evaluation of Structures and Equipment due to High-frequency Earthquakes (구조물 및 기기의 내진성능 평가를 위한 고주파수 지진에 의한 원자력발전소의 지진응답 증폭계수)

  • Eem, Seung-Hyun;Choi, In-Kil;Jeon, Bub-Gyu;Kwag, Shinyoung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.123-128
    • /
    • 2020
  • Analysis of the 2016 Gyeongju earthquake and the 2017 Pohang earthquake showed the characteristics of a typical high-frequency earthquake with many high-frequency components, short time strong motion duration, and large peak ground acceleration relative to the magnitude of the earthquake. Domestic nuclear power plants were designed and evaluated based on NRC's Regulatory Guide 1.60 design response spectrum, which had a great deal of energy in the low-frequency range. Therefore, nuclear power plants should carry out seismic verification and seismic performance evaluation of systems, structures, and components by reflecting the domestic characteristics of earthquakes. In this study, high-frequency amplification factors that can be used for seismic verification and seismic performance evaluation of nuclear power plant systems, structures, and equipment were analyzed. In order to analyze the high-frequency amplification factor, five sets of seismic time history were generated, which were matched with the uniform hazard response spectrum to reflect the characteristics of domestic earthquake motion. The nuclear power plant was subjected to seismic analysis for the construction of the Korean standard nuclear power plant, OPR1000, which is a reactor building, an auxiliary building assembly, a component cooling water heat exchanger building, and an essential service water building. Based on the results of the seismic analysis, a high-frequency amplification factor was derived upon the calculation of the floor response spectrum of the important locations of nuclear power plants. The high-frequency amplification factor can be effectively used for the seismic verification and seismic performance evaluation of electric equipment which are sensitive to high-frequency earthquakes.

Asymmetry of stock market volatility in high frequency data

  • Lee Ji-Hyeon;Kim Dong-Seok;Lee Hoe-Gyeong
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.582-586
    • /
    • 2004
  • The purpose of this study is to examine the lead-lag relationship between volatility and returns in high frequency stock market data to see the validity of two hypotheses that explain volatility asymmetry. Specifically, wavelet analysis is applied to decompose the volatility process into permanent and transitory components and then each component is investigated in conjunction with returns. The results from cross-correlation analysis between volatility and returns support the leverage effect hypothesis rather than the volatility feedback hypothesis in all cases.

  • PDF

The Effect of Train Motion on Current Collection in High-speed Train

  • Kim, Jung-Soo
    • International Journal of Safety
    • /
    • v.5 no.1
    • /
    • pp.1-4
    • /
    • 2006
  • The safety performance of the current collection system is evaluated by conducting a test run in which accelerometer and load cell signals are analyzed. It has been found that the current collection performance is strongly influenced by the train speed, with the major frequency components arising from the train traversing the span spacing and the 8.5 Hz component originating from the panhead resonance. The train acceleration is found to have significant influence on the span passing frequency but negligible effect on the resonant response.