• 제목/요약/키워드: High fracture toughness

검색결과 412건 처리시간 0.026초

7175Al 대형 단조재의 미세조직과 파괴인성 (Microstructure and Fracture Toughness of 7175Al Heavy Forgings)

  • 이오연;장성환
    • 열처리공학회지
    • /
    • 제14권2호
    • /
    • pp.89-95
    • /
    • 2001
  • The 7175Al alloy is particularly interesting for its high strength and sufficient ductility, fracture toughness and corrosion resistance. Currently vigorous efforts have been made to develop large rockets usable for various purposes in the space. This has created the demand of big size of 7175Al billet which would be applied to heavy forgings. The aim of this study is to investigate the quality level of big billet and the effect of billet size on the mechanical properties of large 7175Al ring roll forgings. The billets range from 370 mm to 720 mm in diameter were homogenized and forged after direct chill casting. The size and volume fraction of second phase particles In ${\Phi}720$ mm billet are larger than those of ${\Phi}370$ mm billet, and its ductility is lower for the condition of homogenization and T6 treatment. The Cu-rich phases formed in interdendritic sites are considered to provide the preferential crack path during cold upsetting. The fracture toughness of ring roll forgings which are made by ${\Phi}370$ mm billet is higher than those of ${\Phi}720$ mm billet.

  • PDF

Mechanical behaviors of concrete combined with steel and synthetic macro-fibers

  • Deng, Zongcai;Li, Jianhui
    • Computers and Concrete
    • /
    • 제4권3호
    • /
    • pp.207-220
    • /
    • 2007
  • In this paper, hybrid fibers including high elastic modulus steel fiber and low elastic modulus synthetic macro-fiber (HPP) as two elements were used as reinforcement materials in concrete. The flexural toughness, flexural impact and fracture performance of the composites were investigated systematically. Flexural impact strength was analyzed with statistic analyses method; based on ASTM and JSCE method, an improved flexural toughness evaluating method suitable for concrete with synthetic macro-fiber was proposed herein. The experimental results showed that when the total fiber volume fractions ($V_f^a$) were kept as a constant ($V_f^a=1.5%$), compared with single type of steel or HPP fibers, hybrid fibers can significantly improve the toughness, flexural impact life and fracture properties of concrete. Relative residual strength RSI', impact ductile index ${\lambda}$ and fracture energy $G_F$ of concrete combined with hybrid fibers were respectively 66-80%, 5-12 and 121-137 N/m, which indicated that the synergistic effects (or combined effects) between steel fiber and synthetic macro-fiber were good.

LNG 저장탱크용 멤브레인재(STS 304강)의 강도 및 파괴인성에 미치는 저온효과 (Low Temperature Effects on the Strength and Fracture Toughness of Membrane for LNG Storage Tank)

  • 김정규;김철수;조동혁;김도식;윤인수
    • 대한기계학회논문집A
    • /
    • 제24권3호
    • /
    • pp.710-717
    • /
    • 2000
  • Tensile and fracture toughness tests of the cold-rolled STS 304 steel plate for membrane material of LNG storage tank were performed at wide range of temperatures, 11 IK(boiling point of LNG), 153K , 193K and 293K(room temperature). Tensile strength significantly increases with a decrease in temperature, but the yield strength is relatively insensitive to temperature. Elongation at 193K abruptly decreases by 50% of that at 293K, and then decreases slightly in the temperature range of 193K to 111K. Strain hardening exponents at low temperatures are about four times as high as that at 293K. Elastic-plastic fracture toughness($J_c$) and tearing modulus($T_{mat}$) tend to decrease with a decrease in temperature. The $J_c$ values are inversely related to effective yield strength in the temperature range of 111K to 293K. These phenomena result from a significant increase in the amount of transformed martensite in low temperature regions.

비원형 단-탄소섬유 보강 시멘트 복합재의 내구성 및 파괴인성 (Durability and Fracture Toughness of Noncircular Type-Carbon Fiber Reinforced Cement Composites)

  • 이영석;김태진
    • 공업화학
    • /
    • 제10권5호
    • /
    • pp.789-795
    • /
    • 1999
  • 본 연구에서는 비원형의 단-탄소섬유를 이용하여 시멘트 복합재를 제조하고 이 복합재의 특성(건조 수축, 동결 융해저항성, 파괴 인성)을 원형 탄소섬유보강 복합재와 비교하여 연구하였다. 그 결과 섬유의 형상과 길이에 크게 의존하였다. C형 탄소섬유보강 시멘트 복합재의 건조수축저감 효과가 다른 형상의 섬유보강 복합재에 비해 우수하였다. 이 효과는 섬유의 종횡비가 클수록 증가하였다. 또한, 동결융해 저항성은 섬유형상의 영향은 두드러지지 않았으나 섬유길이와 섬유함유율에 따라 증가하였다. 특히, C형 보강 시멘트 복합재의 파괴 인성 및 균열 저항성은 다른 것에 비해 크게 개선되었다. 이는 더 큰 계면으로 파괴에너지를 더 많이 흡수하였기 때문으로 생각된다.

  • PDF

고장력강(HT50) 레이저용접부의 용접잔류응력 및 파괴인성 특성 (The Welding Residual Stress and Fracture Toughness Characteristics of HT50 Laser Welded Joint)

  • 노찬승;방희선;방한서;오종인
    • 한국해양공학회지
    • /
    • 제21권3호
    • /
    • pp.71-76
    • /
    • 2007
  • Recently, many industries have been employing the application of laser beam welding, due to the resulting high welding quality, such as smaller width of melting and heat affective zone, smaller welding deformation, and fine grains of weldment, compared to arc welding. However, in order to appropriately utilize this welding process with steel structure, the characteristics of welding residual stresses and fracture toughness in welded joints are to be investigated for reliability. Therefore, in this study, the mechanical properties of weldments by arc and laser welding are investigated using FEM to confirm the weldability of laser welding to the general structural steel (HT50). The Charpy impact test and 3-points bending CTOD test are carried out in the range of temperatures between $-60^{\circ}C\;and\;20^{\circ}C$, in order to understand the effect on the fracture toughness of weldments. From the research results, it has been found that the maximum residual stress appears at the center of plate thickness, and that the fracture toughness is influenced by strength mis-match.

Effect of fiber content on the performance of UHPC slabs under impact loading - experimental and analytical investigation

  • Muhammad Umar Khan;Shamsad Ahmad;Mohammed A. Al-Osta;Ali Husain Algadhib;Husain Jubran Al-Gahtani
    • Advances in concrete construction
    • /
    • 제15권3호
    • /
    • pp.161-170
    • /
    • 2023
  • Ultra-high-performance concrete (UHPC) is produced using high amount of cementitious materials, very low water/cementitious materials ratio, fine-sized fillers, and steel fibers. Due to the dense microstructure of UHPC, it possesses very high strength, elasticity, and durability. Besides that, the UHPC exhibits high ductility and fracture toughness due to presence of fibers in its matrix. While the high ductility of UHPC allows it to undergo high strain/deflection before failure, the high fracture toughness of UHPC greatly enhances its capacity to absorb impact energy without allowing the formation of severe cracking or penetration by the impactor. These advantages with UHPC make it a suitable material for construction of the structural members subjected to special loading conditions. In this research work, the UHPC mixtures having three different dosages of steel fibers (2%, 4% and 6% by weight corresponding to 0.67%, 1.33% and 2% by volume) were characterized in terms of their mechanical properties including facture toughness, before using these concrete mixtures for casting the slab specimens, which were tested under high-energy impact loading with the help of a drop-weight impact test setup. The effect of fiber content on the impact energy absorption capacity and central deflection of the slab specimens were investigated and the equations correlating fiber content with the energy absorption capacity and central deflection were obtained with high degrees of fit. Finite element modeling (FEM) was performed to simulate the behavior of the slabs under impact loading. The FEM results were found to be in good agreement with their corresponding experimentally generated results.

Effect of Silicon on the Fracture Characteristics of Austempered Ductile Iron

  • Kang, In-Chan
    • 한국주조공학회지
    • /
    • 제12권1호
    • /
    • pp.25-31
    • /
    • 1992
  • The effects of Si and austempering temperature on the fracture characteristics and the microstructures of austempered ductile irons were investigated. As Si content increased from 2.28% to 3.0%, the precipitation of carbides during bainitic transformation and was suppressed the amount of retained austenite increased resulting in the increase in the fracture toughness. It is believed that the high Si limited the formation of martensite in the microstructure and minimized the segregation of the other elements at cell boundaries. But in samples with too high Si content as 3.3%, the formation of islands of free ferrite in the bainitic structures was observed and the fracture toughness was measured to have degraded.

  • PDF

AE에 의한 SK-5강의 파괴기구 구명 (On Fracture Mechanism of SK-5 Steel by AE Method)

  • 김상철;이억섭;함경춘;오범석
    • 한국정밀공학회지
    • /
    • 제7권4호
    • /
    • pp.130-139
    • /
    • 1990
  • It is well known that mechanisms of fracture and crack growth depend upon material characteristics such as fracture toughness, environmental condition, crack geometry and mechanical properties. It seems to be very important to investighate the effects of the above factors on the behavior of structural components which contain flaws for the detailed evaluation of their integrity. In this experimental research, fracture behaviors of SK-5 high carbon steel was investigated by using Acoustic Emission(AE) technique. Fracturing processes of materials were estimated through both the tension test with nominal specimens and the fracture test with compact tension specimens. The critical applied load which corresponds to the crack initiation and propagation is very improtant for the determination of yield strength of fracture toughness. The critical applied load($P_Q$) was determined through AE method and the source of AE signal was estimated by fractography analysis. The experimental results may contribute to the safety analyses and strength evaluation of structures.

  • PDF

$SCS6/Si_3N_4$ 연속섬유강화 세라믹 복합재료의 기계적 거동 및 파괴저항평가 (Mechanical Behavior and Fracture Resistance of $SCS6/Si_3N_4$ CFCCs)

  • 윤유성;권오헌
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.658-662
    • /
    • 2001
  • Continuous fiber ceramic composites(CPCCs) having the advantages of ceramics resistance to heat, eroson can be applied in chemical reactors and engine. CFCCs has relatively high stiffness in spite of low weight. In particular, it exhibits greatly increased toughness, which serves to decrease its inherent damage characteristics of the brittle nature of monolithic ceramics. In this wort, tensile and flexural test for SCS6 fiber/ $Si_3N_4$ matrix composites were studied. An objective of this study is to obtain the basic quantities of mechanical properties for tension and flexural test and link these to the fracture resistance behavior. Then, we showed that wok of fracture concept was useful as a method for describing fracture restance behavior of CFCCs.

  • PDF

수계공정에 의한 알루미나 테이프로 제조한 세라믹 인공치관용 알루미나 유리 복합체의 기계적 물성 (Mechanical Properties of Alumina-Glass Dental Composites Prepared from Aqueous-Based Tape Casting)

  • 이명현;김대준;이득용;이정훈;김창은
    • 한국세라믹학회지
    • /
    • 제36권10호
    • /
    • pp.1123-1131
    • /
    • 1999
  • Alumina-glass composites which are considered as the material of the choice for all dental crown was prepared by aqeous-based tape casting and sintering for 2h at 1120$^{\circ}C$ followed by glass infiltration for 2h at 1100$^{\circ}C$ Biaxial strength and fracture toughness of the composites were evaluated to determine the optimum composition of the tape as a function of the amount of constituent such as alumina binder and plasticizer. The strength and the fracture toughness of the alumina tape increased with increasing the contents of alumina and binder. These observations are consistent with in fluence of the constituents on mean alumuna particle distance in tapes suggesting that high strength of the glass infiltrated alumina composites is related to toughening by crack bowing. The biaxial strength and the fracture toughness of the composite containing the optimum constituent composition were 523 MPa and 3.3 MPa$.$1/2 respectively.

  • PDF