• Title/Summary/Keyword: High fracture toughness

Search Result 414, Processing Time 0.043 seconds

HIGH STRENGTH ALUMINIUM ALLOYS PROCESSED BY SPRAY/CODEPOSITION

  • Juarez-Islas, Julio Alberto
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 1992.05a
    • /
    • pp.14-14
    • /
    • 1992
  • During the past five years a very successful effort has been made to improve existing and develop new aluminium alloys. The progress achieved has been possible because of the development of new production methods, such as powder metallurgy and spray/deposition. These methods make use of rapid solidification process which alloys compositions other than those achieved by conventional ingot metallurgy. The ingot metallurgy of the 2000 and 7000 series used thus far, as well as the age hardening Al-Li alloys, show several disadvantages caused by the production process. Such problems are primarily coarse intermetallic constituent phases, coarse grains and macrosegregation, resulting in low fracture toughness. The present contribution reports results of an experimental investigation performed on a modern high strength spay deposited aluminium alloy of the Al-Zn-Mg-Cu (7075 and the modified 7150X) type. Results are given in terms of its microstructural characterization by using X-ray diffractomertry and transmission electron microscopic. The mechanical propierties of those alloys in the as-extruded and extruded+aged condition were evaluated by using microhardness Vickers, tensile test and fracture toughness measurements.

  • PDF

Effect of Heat Treatment on the Mechanical Properties of P/M High Speed Steel (분말 고속도로공구강의 기계적 특성에 미치는 열처리 영향)

  • 김용진
    • Journal of Powder Materials
    • /
    • v.4 no.3
    • /
    • pp.222-229
    • /
    • 1997
  • A P/M high speed steel of ASP 30 grade was austenitized, gas quenched and tempered at various conditional. The mechanical properties such as hardness, bend strength and fracture toughness were evaluated after heat treatment. The microstructure and the type and volume fraction of carbides were analyzed by an optical microscope, image analyzer and XRD. The primary carbides after the heat treatment were MC and $M_6C$ type. The volume of the total carbide varied from 10 to 15% depending on the austenitizing and tempering temperature. The tempering temperature for maximum hardness was at around 52$0^{\circ}C$. But the maximum bend strength was obtained at about 55$0^{\circ}C$. The fracture toughness was largely affected by the presence of retained austenite after gas quenching and secondary hardening during tempering.

  • PDF

Effect of $Si_3N_4$ Whisker and SiC Platelet Addition on Phase Transformation and Mechanical Properties of the $\alpha/\beta$ Sialon Matrix Composites (보강재로 첨가된 $Si_3N_4$ Whisker와 SiC Platelet가 $\alpha/\beta$ Sialon 복합체의 상변태와 기계적 물성에 미치는 영향)

  • 한병동;임대순;박동수;이수영;김해두
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.12
    • /
    • pp.1417-1423
    • /
    • 1995
  • α/β sialon based composites containing silicon nitride whisker and silicon carbide platelet were fabricated by hot pressing. Effect of the reinforcing agents on the α to β phase transformation of the sialon as well as on the mechanical properties was investigated. Silicon nitride whisker and silicon carbide platelet promoted the phse transformation. TEM/EDS analysis revealed that the grain containing the whisker had 'core-rim' structure; core being high purity Si3N4 whisker and rim being β-sialon. Flexural strength of the composite decreased with the reinforcement addition which, on the other hand, improved fracture toughness of it. High temperature strength was measured at 1300℃ to be about 130 MPa lower than that measured at RT for the whisker reinforced composites.

  • PDF

Fracture Mechanics Characteristics of Wheel Materials for High Speed Train (고속철도용 차륜재의 파괴 역학적 특성)

  • Kwon S.J.;Seo J.W.;Hur H.M.;Kwon S.T.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.20-23
    • /
    • 2005
  • The service demands of railway vehicles have become severe in recent years due to a general increase in operating speeds. It is very important to evaluate the fracture mechanics characteristics with respect to high-speed train wheel. In the present study, fracture mechanics characterization tests were carried out in accordance with various wheel materials. The result shows that fracture mechanics characteristic should be considered in the design code of the wheel materials.

  • PDF

Effects of Inclusions on Fracture Toughness for 1%CrMoV Rotor Steel (1%CrMoV 로터강의 파괴인성에 미치는 개제물의 영향)

  • Jeong, Sun-Eok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2319-2325
    • /
    • 2000
  • This thesis studied that seven kinds of residual elements(inclusions) had influenced on fracture toughness($K_{IC}$) obtained by Begley-Logsdon and Rolfe-Novak model equation using tensile an d impact test data of I%CrMoV HP(high pressure) rotor steel. $K_{IC}$ design curve of ASME and fracture surface by SEM were also considered, obtained results are summarized as follows $K_{IC}$ was linearly increased with increase of temperature, effect of the inclusions was significantly over FATT. $K_{IC}$ at lower shelf temperature was quantitatively related to yield strength and was agreed well with Begley's equation. It was difficult to determine $K_{IC}$ because of specimen size and tester capacity at upper shelf temperature, but for this view point Rolfe-Novak's equation was useful. The degree of brittle fracture was dependent on FATT fundamentally, adding S, Sb to matrix decreased impact energy and adding Cu, As increased yield(tensile) strength, and the influence of the others minority inclusion was comparatively insignificant.

Effect of Ni on the Mechanical Properties and Fracture Characteristics of Austempered Ductile Iron (오스템퍼드 구상흑연주철의 파괴특성에 미치는 Ni의 영향에 관한 연구)

  • Baek, Sang-Ho;Kim, Hong-Beom;Kim, Chang-Kuy;Choi, Chang-Ock
    • Journal of Korea Foundry Society
    • /
    • v.14 no.1
    • /
    • pp.52-61
    • /
    • 1994
  • The effect of Ni addition, on the mechanical properties and fracture characteristics of Mo-Cu and Mo-Ni-Cu alloyed ductile iron austenitized at $900^{\circ}C$ and austempering temperatures of $250^{\circ}C$, $300^{\circ}C$ and $350^{\circ}C$. The tensile strength, yield strength and hardness are decreased and elongation and impact value are increased in both Mo-Cu and Mo-Ni-Cu alloyed austempered ductile iron, with increased austempering temperature. According to the austempering temperature are increased, the amount of retained austenite are increased. Maximum value of fracture toughness is obtained at $350^{\circ}C$ austempering temperature at this condition, the amount of retained austenite came to 40% in Mo-Ni-Cu alloyed ADI and 34% in Mo-Cu alloyed ADI. The fracture surface of ADI which had represented high toughness are showed a quasi-cleavage pattern and a dimple pattern with micro void. Comparing the fracture characteristics of Mo-Cu alloyed ADI with that of Mo-Ni-Cu alloyed ADI, the latter was superior to the former.

  • PDF

A comprehensive study of the effects of long-term thermal aging on the fracture resistance of cast austenitic stainless steels

  • Collins, David A.;Carter, Emily L.;Lach, Timothy G.;Byun, Thak Sang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.709-731
    • /
    • 2022
  • Loss of fracture resistance due to thermal aging degradation is a potential limiting factor affecting the long-term (80+ year) viability of nuclear reactors. To evaluate the effects of decades of aging in a practical time frame, accelerated aging must be employed prior to mechanical characterization. In this study, a variety of chemically and microstructurally diverse austenitic stainless steels were aged between 0 and 30,000 h at 290-400 ℃ to simulate 0-80+ years of operation. Over 600 static fracture tests were carried out between room temperature and 400 ℃. The results presented include selected J-R curves of each material as well as K0.2mm fracture toughness values mapped against aging condition and ferrite content in order to display any trends related to those variables. Results regarding differences in processing, optimal ferrite content under light aging, and the relationship between test temperature and Mo content were observed. Overall, it was found that both the ferrite volume fraction and molybdenum content had significant effects on thermal degradation susceptibility. It was determined that materials with >25 vol% ferrite are unlikely to be viable for 80 years, particularly if they have high Mo contents (>2 wt%), while materials less than 15 vol% ferrite are viable regardless of Mo content.

A study on the Dynamic Fracture Toughness for Polymeric Materials (폴리머재료의 파괴인성치에 관한 연구)

  • 최영식;박명균
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2001.05a
    • /
    • pp.311-317
    • /
    • 2001
  • The notched Charpy and Izod impact tests are the most prevalent techniques used to characterize the effects of high impulse loads on ploymeric materials. An analysis method for rubber toughened PVC is suggested to evaluate critical strain energy release rates(Gc) from the Charpy impact energy measurements. An Instrumented Charpy Impact tester was used to extract ancillary information concerning fracture properties in addition to total fracture properties and maximum critical loads. The stress intensity factor Kd was computed for varying amounts of rubber contents from the obtained maximum critical loads and also toughening effects were investigated as well.

  • PDF

Effect of Mechanical and Toughening Characteristics of Epoxy/Carbon Fiber Composite by Polyamide 6 Particles, CTBN Addition Technology (Polyamide 6 입자 및 CTBN 첨가 기술에 따른 에폭시/탄소섬유 복합재의 강인화 효과 및 기계적 특성)

  • Sung-Youl Bae;Kyo-Moon Lee;Sanjay Kumar;Ji-Hun Seok;Jae-Wan Choi;Woo-Hyuk Son;Yun-Hae Kim
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.355-360
    • /
    • 2023
  • Epoxy-based carbon fibers reinforced plastic (CFRP) exhibit limitations in their suitability for industrial applications due to high brittleness characteristics. To address this challenge, extensive investigations are underway to enhance their toughness properties. This research focuses on evaluating the toughening mechanisms achieved by Polyamide 6 particles(p-PA6) and Carboxyl-Terminated Butadiene-Acrylonitrile (CTBN) elastomer, with a specific emphasis on utilizing minimal additive quantities. The study explores the impact of varying concentrations of p-PA6 and CTBN additives, namely 0.5, 1, 2.5, and 5 phr, through comprehensive Mode I fracture toughness and tensile strength analyses. The inclusion of p-PA6 demonstrated improvements in toughness when introduced at a relatively low content of 1phr. This improvement manifested as a sustained fracture behavior, contributing to enhanced toughness, while simultaneously maintaining the material's tensile strength. Furthermore, the investigation revealed that the incorporation of p-PA6 affected in particle aggregation, thus influencing the overall toughening mechanism. Incorporation of CTBN, an elastomeric modifier, exhibited a pronounced increase in fracture toughness at higher concentrations of 2.5 phr and beyond. However, this increase in toughness was accompanied by a reduction in tensile strength, resulting in fracture behavior similar to conventional CFRP exhibiting brittleness. The synergy between pPA6, CTBN and CFRP appeared to marginally enhance tensile strength under specific content conditions. As a result of this study, optimized conditions for the application of the p-PA6, CTBN toughening technology have been identified and established.