• 제목/요약/키워드: High fatigue strength

검색결과 707건 처리시간 0.031초

OrcaFlex를 이용한 심해 SCR 구조 해석 (Structural Analysis of Deepwater Steel Catenary Riser using OrcaFlex)

  • 박규식;최한석;김도균;유수영;강수창
    • 한국해양공학회지
    • /
    • 제29권1호
    • /
    • pp.16-27
    • /
    • 2015
  • The design challenges when attempting to obtain sufficient strength for a deepwater steel catenary riser (SCR) include high stress near the hang-off location, an elevated beam-column buckling load due to the effective compression in the touchdown zone (TDZ), and increased stress and low-cycle fatigue damage in the TDZ. Therefore, a systematic strength analysis is required for the proper design of an SCR. However, deepwater SCR analysis is a new research area. Thus, the objective of this study was to develop an overall analysis procedure for a deepwater SCR. The structural behavior of a deepwater SCR under various environmental loading conditions was investigated, and a sensitivity analysis was conducted with respect to various parameters such as the SCR weight, weight of the internal contents, hang-off angle (HOA), and vertical soil stiffness. Based on a deepwater SCR design example, it was found that the maximum stress of an SCR occurred at a hang-off location under parallel loading direction with respect to the riser plane, except for a wave dominant dynamic survival loading condition. Furthermore, the tensile stress governed the total stress of the SCRs, whereas the bending stress governed the total stress at the TDZ. The weight of the SCR and internal contents affected the maximum stress of the SCR more than the HOA and vertical soil stiffness, because the weight of the SCR, including the internal contents, was directly related to its tensile stress.

Ti-Nb계 합금의 상변화가 기계적 성질에 미치는 영향 (Effects of phase changes on mechanical properties of Ti-Nb alloys)

  • 박효병
    • 대한치과기공학회지
    • /
    • 제27권1호
    • /
    • pp.9-17
    • /
    • 2005
  • The use of titanium alloys as biomaterials is increasing due to their superior biocompatibility and enhanced corrosion resistance compared to conventional stainless steels and cobalt-based alloys. Ti-6Al-4V ($\alpha+\beta$type) alloy instead of pure titanium ($\alpha$type) is being widely used as biomaterials has some characteristics such as high fatigue strength, tensile strength and corrosion resistance. But it has been reported recently that the vanadium element expresses cytotoxicity and the aluminium element is related with dementia of Alzheimer type and neurotoxicity. In order to overcome their detrimental effects, $\beta$-phase stabilizer Nb was chosen in the present study. This paper was described the influence of phase changes of Ti-Nb alloys on mechanical properties. Ti-3wt.%Nb($\alpha$type),Ti-20wt.%Nb($\alpha+\beta$type) and Ti-40wt.%Nb($\beta$type) alloys were melted by vacuum arc furnace. The specimens were homogenized at 1050$^{\circ}C$ for 24hr and were then hot rolled to 50% reduction. Each alloys were solution heat treated at $\beta$ zone and $\alpha+\beta$ zone after homogenization and then were aged. The mechanical properties of Ti alloys were analysed by hardness test, tensile test, elongation test and SEM test. The results can be summarized as follows: 1) The higher hardness value of $\alpha+\beta$type alloy was obtained compared to the, $\alpha,\beta$type alloys. 2) The aged treated showed better hardness compared to the solution heat treated, homogenized. 3) In the case of solution and aging treatment at $\beta$region, the $\alpha+\beta$type alloy showed the most highest tensile strength and $\beta$type alloy showed the best elongation.

  • PDF

적층식 제조 공정을 활용한 스테인레스 316L 제작기술의 특징과 기계적 속성 (Characterization and Mechanical Properties of Stainless Steel 316L Fabricated Using Additive Manufacturing Processes)

  • Choi, Cheol;Jung, Mihee
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제7권1호
    • /
    • pp.129-135
    • /
    • 2021
  • Recently, additive manufacturing (AM) technology such as powder bed fusion (PBF) and directed energy deposition (DED) are actively attempted as consumers' needs for parts with complex shapes and expensive materials. In the present work, the effect of processing parameters on the mechanical properties of 316L stainless steel coupons fabricated by PBF and DED AM technology was investigated. Three major mechanical tests, including tension, impact, and fatigue, were performed on coupons extracted from the standard components at angles of 0, 45, 90 degrees for the build layers, and compared with those of investment casting and commercial wrought products. Austenitic 316L stainless steel additively manufactured have been well known to be generally stronger but highly vulnerable to impact and lack in elongation compared to casting and wrought materials. The process-induced pore density has been proved the most critical factor in determining the mechanical properties of AM-built metal parts. Therefore, it was strongly recommended to reduce those lack of fusion defects as much as possible by carefully control the energy density of the laser. For example, under the high energy density conditions, PBF-built parts showed 46% higher tensile strength but more than 75% lower impact strength than the wrought products. However, by optimizing the energy density of the laser of the metal AM system, it has been confirmed that it is possible to manufacture metal parts that can satisfy both strength and ductility, and thus it is expected to be actively applied in the field of electric power section soon.

압입시험기를 이용한 후판용접재의 잔류응력 분포에 관한 연구 (Study on Residual Stress Distribution in Thick Plate Welded Material Using Indentation Equipment)

  • 허선철;김귀남;이종석;박철홍;박준성;박원조
    • 한국해양공학회지
    • /
    • 제25권6호
    • /
    • pp.66-71
    • /
    • 2011
  • Recently, the production of shipbuilding and offshore plant industries, with a trend toward large structures, has led to an increased use of high strength ultra-thick plates. The use of ultra-thick plates increases the welding tasks, and the welding process generates distortion and residual stress in the weldment because of the rapid heating and cooling. Welding distortion and residual stress in the welded structure resulte in many troubles such as deformation and life deterioration. In particular, the welding residual stress has an important effect on welding deformation, fatigue, buckling strength, brittleness, etc. The purpose of this study was to evaluate the residual stress at a multi-pass weldment using an experimental method for EH36 high-tension steel. In this experimental method, AIS3000 was used to measure the residual stress of a welded part, HAZ, and base metal; EPMA and XRD were used to study the material properties.

다구찌기법을 이용한 대형 평판트레일러 하부프레임 경량설계 (Optimal Design of Lightweight Frame for Heavy Flat-Bed Trailer by Using Taguchi Method)

  • 김진곤;윤민수
    • 대한기계학회논문집A
    • /
    • 제34권3호
    • /
    • pp.353-359
    • /
    • 2010
  • 최근 환경문제로 인한 차량의 연료절감이 중요해지면서 수송산업에서도 대형 수송기계의 경량설계에 대한 필요성이 지속적으로 커지고 있다. 본 연구에서는, 고강도강으로 대체된 대형 평판 트레일러 프레임의 경량모델을 개발하기 위하여 구조해석을 수행하였다. 이를 위하여, 트레일러 프레임의 주요 설계변수들을 선정하고 다구찌 기법을 적용하여 응력, 처짐량 그리고 비틀림 강성에 대하여 최적화된 결과를 도출하였다. 또한, 도출된 경량설계안의 타당성을 검토하기 위하여 시작품을 제작하여 실제 내구시험을 수행하였다.

LCD 로봇 주요 프레임에 대한 설계 최적화 및 용접부 수명평가 (Design Optimization and Endurance Assessment of Weld Area for LCD Robot Frame)

  • 한성욱;강윤식;김태현;김상현
    • 대한기계학회논문집 C: 기술과 교육
    • /
    • 제5권2호
    • /
    • pp.89-95
    • /
    • 2017
  • 제품을 개발하는데 있어서 경량화와 원가절감이라는 두가지 요소는 가장 중요한 화두이다. 특히 대형 LCD 로봇은 최대 $3{\times}3m$ 이상의 글라스를 7m 높이까지 상하, 전후로의 직선운동과 선회축을 중심으로한 회전운동을 하면서 작업공정간 이송을 가능케 하는 대형 구조물이다. 따라서 지나치게 무거울 경우에는 클린룸내 설치에 문제가 있을 수 있고 반송물의 정확한 이송을 위하여는 고강성이 요구되며 대량 생산을 위한 연속작업을 충분히 감당할 수 있는 내구강도를 확보하여야 한다. 따라서 경량화, 고강성, 고강도 제품에 대한 요구는 갈수록 증가하고 있다. 현재 개발되고 있는 11 세대 대형 LCD 승강프레임은 이러한 요구조건을 충족하기 위하여 최적설계 기법을 적용하여 기존 제품 대비 경량화와 고강성 요구조건을 만족하였으며 용접부에 대한 상세 수명평가로 내구강도에 대한 신뢰성을 확보하였다.

자긴가공된 SCM440 고강도강의 잔류응력평가에 관한 연구 (A Study on the Residual Stress Evaluation of Autofrettaged SCM440 High Strength Steel)

  • 김재훈;심우성;윤용근;이영신;차기업;홍석균
    • 한국추진공학회지
    • /
    • 제14권4호
    • /
    • pp.39-45
    • /
    • 2010
  • 자주포 또는 원자로와 같은 두꺼운 실린더는 압력용기 내부에 유익한 잔류 압축응력을 유도하여 작용압력과 피로수명을 증가시키도록 자긴 가공되고 있다. 자긴가공도가 증가하면 구멍에서 압축잔류응력의 크기도 증가한다. 본연구의 목적은 ASME 코드에 의해 적용된 Kendall 모델을 이용하여 고강도 SCM440 강의 정확한 잔류응력을 예측하는 것이다. SCM440 후육실린더의 내부에 유압이 적용되고 30% 변형률까지 자긴 가공하였다. 자긴가공된 시편은 전해연마하고 X-ray 회절법을 이용하여 정확한 잔류응력을 산출하도록 하였다. 그리고 주사전자현미경을 이용하여 자긴가공에 의해 소성변형된 표면층을 분석하였다. 측정한 잔류응력과 계산된 결과를 비교하여 약간의 차이는 있으나 비교적 서로 잘 일치하고 있다.

동하중 등가 설계압을 받는 고속 경구조선 알루미늄 보강판부재의 구조응답 고찰 (Consideration of the Structural Response of High Speed Aluminum Planning Boat Stiffened Plate Member subjected to the Simplified Equivalent Dynamic Design Pressure)

  • 함주혁;강병윤;추경훈
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.408-413
    • /
    • 2004
  • High speed planning boats also have been required more and more the rational strength analysis and evaluation for the optimal structural design in respect of the structural lightness according to the high speed trend. Even though the suggestion of the simple type equation for the equivalent dynamic pressure is reasonable to design the scantling of ship structure conveniently, many research activities for more reasonable improvement of the simple design pressure, have been continued to suggest the more accurate equivalent static description of tire structural response such as the deflection and stress of hull structure. In this research, we focus on the aluminum bottom stiffened plate structure in which structural scantling is mainly depend on the local loads such as dynamic or impact pressure without other load effects and structural response for the simple dynamic equivalent pressure was investigated through the structural analysis. In order to investigate the structural response of the bottom stiffened plate structure subjected to the dynamic equivalent design pressure, linear and nonlinear structural analysis of the bottom stiffened plate structure of 4.3 ton aluminum planning boat was performed based on the equivalent static applied loads which were derived from the KR regulation and representative one among various dynamic equivalent pressure equations. From above analysis results, we found that the response such as deflection and stress of plate member was similar with the response results of one plate member model with fixed boundary, which was published previous paper and in case of KR design loading, all response of stiffened plate structure were within elastic limit. Through the nonlinear analysis, nearly elastic behavior including the slight geometrical nonlinear response was dominant but plastic local zone was appeared at $85\%$ limit load. Therefore, we can say that through tire linear and nonlinear analysis, this stiffened plate member has no structural strength problem based on the yield criteria in case within $60\%$ limit load except the other strength point of view such as the fatigue and buckling problem.

  • PDF

3차원 솔리드 요소를 이용한 용접부 핫스팟 응력 계산에 대한 연구 (Study on Hot Spot Stress Calculation for Welded Joints using 3D Solid Finite Elements)

  • 오정식;김유일;전석희
    • 한국해양공학회지
    • /
    • 제29권1호
    • /
    • pp.45-55
    • /
    • 2015
  • Because of the high stress concentration near the toe of a welded joint, the calculation of local stress using the finite element method which is relevant to the fatigue strength of the weld toe crack, is a challenging task. This is mainly caused by the sensitivity of finite element analysis, which usually occurs near the area of a dramatically changing stress field. This paper presents a novel numerical method through which a less mesh-sensitive local stress calculation can be achieved based on the 3D solid finite element, strictly sticking to the original definition of hot spot stress. In order to achieve the goal, a traction stress, defined at 0.5t and 1.5t away from the weld toe, was calculated using either a force-equivalent or work-equivalent approach, both of which are based on the internal nodal forces on the imaginary cut planes. In the force-equivalent approach, the traction stress on the imaginary cut plane was calculated using the simple force and moment equilibrium, whereas the equivalence of the work done by both the nodal forces and linearized traction stress was employed in the work-equivalent approach. In order to confirm the validity of the proposed method, five typical welded joints widely used in ships and offshore structures were analyzed using five different solid element types and four different mesh sizes. Finally, the performance of the proposed method was compared with that of the traditionally used surface stress extrapolation method. It turned out that the sensitivity of the hot spot stress for the analyzed typical welded joints obtained from the proposed method outperformed the traditional extrapolation method by far.

알카리용액에서 구름베어링용 세라믹스의 부식이 구름마모 및 경도에 미치는 영향 (The Effect of Corrosion of Rolling Bearing Ceramics in Alkalic Solution on the Rolling Wear and Hardness)

  • 최인혁;김상근;박창남;윤대현;신동우
    • Tribology and Lubricants
    • /
    • 제16권2호
    • /
    • pp.121-125
    • /
    • 2000
  • Silicon nitride ceramic has been verified as an excellent rolling bearing material because of its high strength and outstanding rolling fatigue life properties. However under some corrosive circumstances it showed drawbacks such as hardness reduction and severe wear caused by corrosion. In this work, the variations of the rolling wear and hardness of three kinds of ceramics were studied for the specimen aged 15 days in alkali water (90 $\pm$ 2$\^{C}$,25 wt% NaOH ). All of the specimens, ① Si$_3$N$_4$, ② 3Y-TZP and ③ 3Y-TZP alloyed with 5 wt% CeO$_2$, were sintered and post-HIPed, and then polished up to 0.02 $\mu$mRa of surface roughness. Rolling wear tests were conducted by MJ type rolling fatigue life tester under the initial theoretical maximum contact stress of 3.16 GPa and the spindle speed of 1,000 rpm. Spindle oil was used as a lubricant. The specimens were not worn before aging. For the specimen aged in alkali water, Si$_3$N$_4$ and 3Y-TZP were worn by rolling wear tests, and hardness was decreased. While aging the specimens, the phase was transformed from tetragonal to monoclinic in 3Y-TZP and the microstructure change occurred in Si$_2$N$_4$. 3Y-TZP specimens alloyed with 5 wt% CeO$_2$ were not worn after aging and no phase transformation occurred while aging.