• Title/Summary/Keyword: High fatigue strength

Search Result 707, Processing Time 0.025 seconds

Development of High Strength and Low Loss Overhead Conductor(I) - Mechanical Properties (고강도 저손실 가공송전선의 개발(I) - 기계적 특성)

  • Kim, Byung-Geol;Kim, Shang-Shu;Park, Joo-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.12
    • /
    • pp.1152-1158
    • /
    • 2005
  • New conductor is developed by using high strength nonmagnetic steel(NM) wire as the core of overhead conductor. This conductor is called ACNR overhead conductor(Aluminum Conductor Nonmagnetic Steel Reinforced). Formed by the combination of aluminum alloy wire and high strength nonmagnetic steel wire, it has about the same weight and diameter as conventional ACSR overhead conductor. To enhance properties beneficial in an electrical and mechanical conductor during the process of high strength nonmagnetic steel wire, we made a large number of improvements and modifications in the working process, aluminum cladded method, and other process. ACNR overhead conductor, we successfully developed, has mechanical and electrical properties as good as or even better than conventional galvanized wire. Microstructure of raw material M wire was austenite and then deformed martensite after drawing process. Strength at room temperature is about $180kgf/mm^2\~200kgf/mm^2$. NM wire developed as core of overhead conductor shows heat resistant characteristics higher than that of HC wire used as core of commercial ACSR overhead conductor, Strength loss was not occur at heat resistant test below $600^{\circ}C$. Fatigue strength of vibration fatigue is about $32kgf/mm^2\~35kgf/mm^2$ and that of tension-tension fatigue is $90kgf/mm^2\~120kgf/mm^2$ which is $50\~65\%$ of tensile strength.

Thermal Fatigue and Wear Properties of High Speed Steel Roll for Hot Strip Mill (열간압연용 고속도공구강롤의 열피로 및 마모특성)

  • 류재화;박종일
    • Transactions of Materials Processing
    • /
    • v.6 no.2
    • /
    • pp.95-101
    • /
    • 1997
  • The thermal fatigue and wear properties of high speed steel roll which was recently developed were investigated by observing microstructure, by measuring mechanical and physical properties, by conducting thermal fatigue testing, and by measuring the amount of wear in actual mill. High speed steel roll had better thermal fatigue testing, and by measuring the amount of wear in actual mill. High speed steel roll had better thermal fatigue life than high chromium iron roll, which was due to lower carbide content, higher strength, and higher thermal conductivity. The amount of wear of high speed steel roll was nearly the same as that of high chromium iron roll in the first finishing stand, which was due to the oxide formation on the roll surface. However, in the third finishing stand, the wear resistance of high speed steel roll was 2~3 times as good as that of high chromium iron roll because the former had higher hardness at high temperature.

  • PDF

Laser Welding Properties of the S45C using Automobile Brake Parts (자동차 브레이크 부품용 S45C 소재의 레이저 용접특성 평가)

  • Sim, Kijoong;Cho, Wonyoung;Kim, Youngkwan;Choi, Kyujae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.103-109
    • /
    • 2014
  • This paper represents the s-cam manufacturing process with the high-carbon steel like S45C using laser welding system. Laser welding of the high-carbon steel is generally difficult because of hardening of the weld zone. Also, existing s-cam manufacturing process, electric resistance welding system, have some problems like increase of production and development cost. To solve those problems, we are introduced the laser welding system with the pre-heating system for precision welding of s-cam with separated shaft and cam part. S-cam manufactured with optimum laser welding conditions is verified the performance like tensile strength, torsional strength and fatigue test. Strength and fatigue test results are described.

COMPARISON OF WEAR RESISTANCE AMONG RESIN DENTURE TEETH OPPOSING VAR10US RESTORATIVE MATERIALS (수복재료에 대합되는 의치용 레진치의 마모저항성 비교)

  • Lee, Chul-Young;Chung, Moon-Kyu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.3
    • /
    • pp.313-327
    • /
    • 1999
  • The aim of this study was to compare wear resistance of resin denture teeth opposing various restorative materials. The wear resistance of conventional acrylic resin teeth(Trubyte Biotone) and three high-strength resin teeth(Bioform IPN, Endura, SR-Orthosit-PE) opposing different restorative materials(gold alloys, dental porcelain, composite resin) was compared. Wear tests were conducted with a sliding-induced wear testing apparatus which applied 100,000 strokes to the specimen in a mesio-distal direction under conditions of 100 stroke/min and constant loading of 1Kgf/tooth. Wear resistance of the resin denture teeth was evaluated by the following criteria : 1) wear depth, 2) weight loss, and 3) SEM observation. Results were as follows. 1. When opposed to gold alloys and composite resin, high-strength resin teeth showed superior wear resistance compared to acrylic resin teeth. But, in cases opposing dental porcelain, differences between the wear of the high-strength and acrylic resin teeth were not statistically significant (p<0.05). 2. When comparing wear resistance among high-strength resin teeth, opposing gold alloys, Endura was slightly more resistant and while in cases opposing dental porcelain, SR-Orthosit-PE was showed to be slightly resistant(p<0.05). 3. The wear of high-strength resin teeth was greater by 5 to 7 times when opposing porcelain and 2 to 3 times when opposing composite resin compared to gold alloys(p<0.05). 4. SEM observations of the wear surface showed that wear of resin teeth opposing gold alloys is a fatigue type of wear and wear of resin teeth opposing dental porcelain is fatigue and abrasion type of wear. Trubyte Biotone showed more severe fatigue type of wear than high-strength resin teeth. In conclusion, the use of dental porcelain should seriously be considered as restorative material in cases opposing resin denture teeth and improvement seems to be needed on resin teeth in the areas of wear resistance.

  • PDF

The Effect of Initial α' on Low and High Cycle Fatigue Behavior of STS 304 Stainless Steel (STS 304 강의 저주기 및 고주기 피로에 있어 초기 마르텐사이트의 영향)

  • Lee, Hyun-Seung;Sin, Hyung-Ju;Kim, Song-Hee
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.331-339
    • /
    • 2001
  • Zero to tension fatigue tests and strain controlled fatigue tests were carried out to find how initial strain induced martensite, ${\alpha}^{\prime}$ affects low and high cycle fatigue behavior and fatigue crack growth mechanisms. Microscopic study and phase analysis were carried out with TEM, SEM, EDAX, Optical Microscope, Ferriscope, and X-ray diffractometry. The amount of Initial ${\alpha}^{\prime}$ was controlled from 0% to 33% by controlling the temperatures for cold working and heat treatment. Lower contents of initial ${\alpha}^{\prime}$ showed higher fatigue resistance in low cycle fatigue but lower fatigue resistance in high cycle fatigue because it is ascribed to the more transformation of ${\alpha}^{\prime}$ martensite during low cycle fatigue and higher ductility. In high cycle fatigue, fatigue life is attributed to the strength and phase transformation of austenite into ${\alpha}^{\prime}$ during fatigue was negligible. ${\gamma}$ boundary, ${\gamma}/twin$ boundary, and ${\gamma}/{\alpha}^{\prime}$ boundary were found to be the preferred site of fatigue crack initiation.

  • PDF

An Analytical Study on Fatigue Strength Evaluation Procedure for the Bogie Frame of Tilting Railway Vehicle (틸팅대차 프레임에 대한 피로강도평가 절차에 관한 해석적 연구)

  • Kim Nam-Po;Kim Jung-Seok
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.4
    • /
    • pp.321-329
    • /
    • 2005
  • This paper has established the strength evaluation procedure of the bogie frame for the Korean tilting train that is being developed in KRRI, In order to establish the strength evaluation procedure, firstly, the loading conditions imposed on the tilting train were investigated. In addition, the static and fatigue strength of the bogie frame has been evaluated. In order to derive the dynamic loads according to the carbody tilting, the load redistribution effect by carbody tilting, the unbalanced lateral acceleration effect by high-speed curving and the tilting actuator force effect have been considered. Multi-body dynamic analyses have been carried out to evaluate the tilting load cases and the strength analysis has been performed by finite element analyses. From this study, the structural safety of the bogie frame could be ensured.

The effect of compress residual stresses of shot peening for fatigue strength of SUP7 and SAE9254 steel (SUP7 및 SAE9254강의 피로강도에 미치는 압축잔류응력의 영향)

  • Park, K.D.;Jung, C.G.
    • Journal of Power System Engineering
    • /
    • v.5 no.4
    • /
    • pp.67-73
    • /
    • 2001
  • Recently the steel parts used at automobiles are required to be used under high stress more than ever before in need of the weight down. To achieve this requirement of a high strength steel, it must be necessary to decrease inclusion content and surface defect as like decarburization, surface roughness etc.. In this study, the surface conditions are measured to know the influence on fatigue properties by two cases of two-stage shot peening iud single-stage shot peening for two kinds of spring steel(SUP7, SAE9254). This study shows the outstanding improvement of fatigue properties at the case of two-stage shot peening in the rotary bending fatigue test and this is assumed to be from decreasing the surface roughness unchanging the surface hardness increasing the compressive residual stress. Results also show fatigue failures originated at inclusion near surface, and this inclusion type is turned out to be a alumina of high hardness.

  • PDF

A Study on The Effect of Residual Stress on Fatigue Propagation Behavior of Spring Steel (스프링강의 피로진전거동에 미치는 잔류응력의 영향)

  • Park, Keyung-Dong;Jung, Chan-Gi
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.366-372
    • /
    • 2002
  • Recently the steel parts used at automobiles are required to be used under high stress more than ever before in need of the weight down. To achieve this requirement of a high strength steel, it must be necessary to decrease inclusion content and surface deject as like decarburization, surface roughness etc.. In this study, the surface conditions are measured to know tile influence on fatigue properties by two cases of shot peening of two-stage shot peening and single-stage shot peening. And for this study, three kinds of spring steel (JISG4081-SUP7,SAE 9254, DIN 50CrV4, ) are made. This study shows the outstanding improvement of fatigue properties at tire case of two-stage shot peening in the rotary bending fatigue test and this is assumed to be from (1) Decreasing the surface roughness (2) Unchanging the surface hardness (3) Increasing the compressive residual stress But, results also show fatigue failures originated at inclusion near surface, and this inclusion type is turned out to be a alumina of high hardness.

  • PDF

Reviews on Very High Cycle Fatigue Behaviors of Structural Metals (구조용 금속의 초고주기피로 거동에 대한 연구 동향)

  • Han, Seung-Wook;Park, Jung-Hoon;Myeong, No-Jun;Choi, Nak-Sam
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.134-140
    • /
    • 2014
  • The paper presents an overview of the present state of study on the fatigue behaviors at very high number of cycles ($N_f$ > $10^7$). A classification of materials with typical S-N curves and influencing factors such as notches, residual stresses, temperatures, corrosion environments and stress ratios are given. The microstructural inhomogeneities of materials and micro-cracks played an important roles in very high cycle fatigue behaviors. The failure mechanisms for the fatigue design of materials and components are mentioned.

Fatigue Strength Analysis of Marine Propeller Blade to Change in Skew Angle (박용 프로펠라의 스큐각 변화에 따른 피로강도해석)

  • Bal-Young Kim;Joo-Sung Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.1
    • /
    • pp.80-87
    • /
    • 1998
  • This paper deals with the evaluation of structural safety to fatigue strength of marine propeller blades having high skew angle and operating in irregular wake field. The determination of the optimum skew angle of a propeller blade is one of the important task at the initial design stage especially in the case of high speed vessel such as container ships. A computer program system has been developed to evaluate the structural safety to fatigue strength and has been applied to several propeller blades with varying skew angle within a wide range. In the parametric study the pressure acting on the blade surface is calculated using the non-lineal lifting surface theory and the structural analysis is performed using MSC/NASTRAN. The relationship between skew angle and structural safety to fatigue strength is investigated and this paper ends with describing the optimum skew angle of a propeller blade.

  • PDF