• 제목/요약/키워드: High energy density battery

검색결과 226건 처리시간 0.028초

다중 동력 연료전지 하이브리드 장갑차량의 동력관리 전략에 관한 연구 (A Study on Power Management Strategy for Multi-Power Source Fuel Cell Hybrid Armored Vehicle)

  • 안상준;김태진;이교일
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.361-365
    • /
    • 2005
  • Since the fuel cell uses the hydrogen for its fuel. it has no emission and higher efficiency than an internal combustion engine. Also fuel cell is much quieter than engine generator and generates heat much less than engine generator. So it has advantage of Army's 'si lent watch' capability and the ability to operate undetected by the enemy. The fuel cell hybrid system combines a fuel cell power system with an ESS. The ESS (e.g., batteries or ultracapacitors) reduces the fuel cell's peak power and transient response requirements. It allows the fuel cell to operate more efficiently and recovery of vehicle energy during deceleration. The battery has high energy density, so it has the advantage regarding driving distance. However, it has a disadvantage considering dynamic characteristic because of low power density. One other hand. the ultracapacitor has higher power density, so it can handle sudden change or discharge of required power. Yet. it has lower energy density. so it will be bigger and heavier than the battery when it has the same energy. This paper proposes the power management strategy for multi-power source fuel cell hybrid system. which is applied with the merits of both battery and ultra capacitor by using both of them simultaneous.

  • PDF

Empirical Capacity Degradation Model for a Lithium-Ion Battery Based on Various C-Rate Charging Conditions

  • Dong Hyun Kim;Juhyung Lee;Kyungseop Shin;Kwang-Bum Kim;Kyung Yoon Chung
    • Journal of Electrochemical Science and Technology
    • /
    • 제15권3호
    • /
    • pp.414-420
    • /
    • 2024
  • Lithium-ion batteries are widely used in many applications due to their high energy density, high efficiency, and excellent cycle ability. Once an unknown Li-ion battery is reusable, it is important to measure its lifetime and state of health. The most favorable measurement method is the cycle test, which is accurate but time- and capacity-consuming. In this study, instead of a cycle test, we present an empirical model based on the C-rate test to understand the state of health of the battery in a short time. As a result, we show that the partially accelerated charge/discharge condition of the Li-ion battery is highly effective for the degradation of battery capacity, even when half of the charge/discharge conditions are the same. This observation provides a measurable method for predicting battery reuse and future capacity degradation.

x-HEV용 AGM 연축전지/EDLC 통합모듈의 성능 및 충방전 거동 (Charging-Discharging Behavior and Performance of AGM Lead Acid Battery/EDLC Module for x-HEV)

  • 김성준;서성원;안신영;김봉구;손정훈;정연길
    • 한국재료학회지
    • /
    • 제31권2호
    • /
    • pp.84-91
    • /
    • 2021
  • To cope with automobile exhaust gas regulations, ISG and charging control systems are applied to HEV vehicles for the purpose of improving fuel economy. These systems require quick charge-discharge performance of high current. Therefore, a Module of the AGM battery with high energy density and EDLC(Electric Double Layer Capacitor) with high power density are constructed to study the charging and discharging behavior. In CCA, which evaluates the starting performance at -18 ℃ & 30 ℃ with high current, EDLC contributed for about 8 sec at the beginning. At 0 ℃ CA (Charge Acceptance), the initial Charging current of the AGM/EDLC Module, is twice that of the AGM lead acid battery. To play the role of EDLC during high-current rapid charging and discharging, the condition of the AGM lead-acid battery is optimally maintained. As a result of a Standard of Battery Association of Japan (SBA) S0101 test, the service life of the Module of the AGM Lead Acid Battery/EDLC is found to improve by 2 times compared to that of the AGM Lead Acid Battery.

나트륨을 활용한 이차전지 연구동향 (Research Review of Sodium and Sodium Ion Battery)

  • 유철휘;강성구;김진배;황갑진
    • 한국수소및신에너지학회논문집
    • /
    • 제26권1호
    • /
    • pp.54-63
    • /
    • 2015
  • The secondary battery using sodium is investigating as one of power storage system and power in electric vehicles. The secondary battery using sodium as a sodium battery and sodium ion battery had merits such as a abundant resources, high energy density and safety. Sodium battery (sodium molten salt battery) is operated at lower temperature ($100^{\circ}C$) compared to NAS and ZEBRA battery ($300{\sim}350^{\circ}C$). Sodium ion battery is investigating as one of the post lithium ion battery. In this paper, it is explained for the principle and recent research trends in sodium molten salt and sodium ion battery.

고에너지 밀도 바나듐 레독스 흐름 전지를 위한 망간산화물 촉매와 다공성 탄소 기재의 시너지 효과 (Synergistic Effect of the MnO Catalyst and Porous Carbon Matrix for High Energy Density Vanadium Redox Flow Battery)

  • 김민성;고민성
    • 한국표면공학회지
    • /
    • 제52권3호
    • /
    • pp.150-155
    • /
    • 2019
  • The carbon electrode was modified through manganese-catalyzed hydrogenation method for high energy density vanadium redox flow battery (VRFB). During the catalytic hydrogenation, the manganese oxide deposited at the surface of the carbon electrode stimulated the conversion reaction from carbon to methane gas. This reaction causes the penetration of the manganese and excavates a number of cavities at electrode surface, which increases the electrochemical activity by inducing additional electrochemically active site. The formation of the porous surface was confirmed by the scanning electron microscopy (SEM) images. Finally, the electrochemical performance test of the electrode with the porous surface showed lower polarization and high reversibility in the cathodic reaction compared to the conventional electrode.

Recent Progress on Polymeric Binders for Silicon Anodes in Lithium-Ion Batteries

  • Choi, Nam-Soon;Ha, Se-Young;Lee, Yongwon;Jang, Jun Yeong;Jeong, Myung-Hwan;Shin, Woo Cheol;Ue, Makoto
    • Journal of Electrochemical Science and Technology
    • /
    • 제6권2호
    • /
    • pp.35-49
    • /
    • 2015
  • Advanced polymeric binders with unique functions such as improvements in the electronic conduction network, mechanical adhesion, and mechanical durability during cycling have recently gained an increasing amount of attention as a promising means of creating high-performance silicon (Si) anodes in lithium-ion batteries with high energy density levels. In this review, we describe the key challenges of Si anodes, particularly highlighting the recent progress in the area of polymeric binders for Si anodes in cells.

THE OPEN-CIRCUIT VOLTAGE STATE ESTIMATION OF THE BATTERY

  • LEE, SHINWON
    • Journal of applied mathematics & informatics
    • /
    • 제39권5_6호
    • /
    • pp.805-811
    • /
    • 2021
  • Currently, batteries use commonly as energy sources for mobile electric devices. Due to the high density of energy, the energy storage state of a battery is very important information. To know the battery's energy storage state, it is necessary to find out the open state voltage of the battery. The open state voltage calculates with a mathematical model, but the computation of the real time state is complicated and requires many calculations. Therefore, the state observer designs to estimate in real time the battery open-circuit voltage as disturbance including model error. Using the estimated open voltage and applying it to the state estimation algorithm, we can estimate the charge. In this study, we first estimate the open-circuit voltage and design an estimation algorithm for estimating the state of battery charge. This includes errors in the system model and has a robust characteristic to noise. It is possible to increase the precision of the charge state estimation.

리튬 이차전지의 저온 성능 개선을 위한 에너지 순환 작동 연구 (Improved Low-temperature Performance of Lithium Secondary Battery Using Energy Circulating Operation)

  • 윤현기;하상현;이재인
    • 전력전자학회논문지
    • /
    • 제26권6호
    • /
    • pp.421-428
    • /
    • 2021
  • Lithium-ion secondary batteries exhibit advantageous characteristics such as high voltage, high energy density, and long life, allowing them to be widely used in both military and daily life. However, the lithium-ion secondary battery does have its limitation; for example, the output power and capacity are readily decreased due to the increased internal impedance during discharging at a lower temperature (-32℃, military requirement). Also, during charging at a lower temperature, lithium dendrite growth is accelerated at the anode, thereby decreasing the battery capacity and life as well. This paper describes a study that involves increasing the internal temperature of lithium-ion secondary battery by energy circulation operation in a low-temperature environment. The energy circulation operation allows the lithium-ion secondary battery to alternately charge and discharge, while the internal resistance of lithium-ion battery acts as a heating element to raise its own temperature. Therefore, the energy circulation operation method and device were newly designed based on the electrochemical impedance spectroscopy of the lithium-ion secondary battery to mediate the battery performance at a lower temperature. Through the energy circulation operation of lithium ion secondary battery, as a result of the heat generated from internal resistance in an extremely low-temperature environment, the temperature of the lithium-ion secondary battery increased by more than 20℃ within 10 minutes and showed a 75% discharging capacity compared with that at room temperature.

에너지 저장장치를 갖는 고 전력밀도 및 저가격형 태양광 인버터 시스템 (High Power Density and Low Cost Photovoltaic Power Conditioning System with Energy Storage System)

  • 금문환;장두희;홍성수;한상규;사공석진
    • 전력전자학회논문지
    • /
    • 제16권6호
    • /
    • pp.587-593
    • /
    • 2011
  • 본 논문에서는 고 전력밀도 및 저가형으로 구성 가능한 새로운 구조의 계통 연계형 태양광 인버터 시스템을 제안한다. 제안 시스템은 태양전지의 최대 전력점 추종기능과 배터리의 충 방전 기능을 단일 전력단으로 구성함으로써, 고 전력밀도 및 저가격형 시스템 구성이 가능하다. 또한, 제안 시스템은 배터리를 링크 캐패시터에 직렬 연결함으로써 링크 캐패시터의 전압 스트레스를 배터리 전압만큼 저감할 수 있으므로 가격저감 효과가 크다. 최종적으로 제안 시스템의 우수성과 신뢰성 검증을 위하여 1.5kW급 태양광 인버터 시스템의 시작품을 제작하였고, 이를 이용한 실험결과를 바탕으로 제안 시스템의 타당성을 검증한다.

A Hybrid Energy Storage System Using a Superconducting Magnet and a Secondary Battery

  • ISE Toshifumi;YOSHIDA Takeshi;KUMAGAI Sadatoshi
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.534-538
    • /
    • 2001
  • Energy storage devices with high energy density as well as high power density are expected to be developed from the point of view of compensation of fluctuating load and generated power by distributed generations such as wind turbines, photovoltaic cells and so on. SMES (Superconducting Magnetic Energy Storage) has higher power density than other energy storage methods, and secondary batteries have higher energy density than SMES. The hybrid energy storage device using SMES and secondary batteries is proposed as the energy storage method with higher power and energy density, the sharing method of power reference value for each storage device, simulation and experimental results are presented.

  • PDF