• Title/Summary/Keyword: High energy

Search Result 20,086, Processing Time 0.054 seconds

Design of an Off Grid type High efficiency Solar charging system Using MATLAB/Simulink (MATLAB/Simulink를 이용한 오프그리드형 고효율 태양광 충전 시스템 설계)

  • Gebreslassie, Maru Mihret;kim, Min;Byun, Gi-sig;Kim, Gwan-hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.735-737
    • /
    • 2017
  • An Off grid or remote solar electric systems are an energy supply to our home or to our companies without the utility of Grid at all. Off grid solar systems are very important for those who live in remote locations especially for developing countries where getting the electric grid is extremely expensive, inconvenient or for those who doesn't need to pay a monthly bill with the electric bill in general. The main critical components of any solar power system or renewable energy harvesting systems are the energy storage systems and its charge controller system. Energy storage systems are the essential integral part of a solar energy harvesting system and in general for all renewable energy harvesting systems. To provide an optimal solution of both high power density and high energy density at the same time we have to use hybrid energy storage systems (HESS), that combine two or more energy storage technologies with complementary characteristics. In this present work, design and simulation we use two storage systems supercapacitor for high power density and lithium based battery for high energy density. Here the system incorporates fast-response supercapacitors to provide power to manage solar smoothing and uses a battery for load shifting. On this paper discuss that the total energy throughout of the battery is much reduced and the typical thermal stresses caused by high discharge rate responses are mitigated by integrating supercapacitors with the battery storage system. In addition of the above discussion the off grid solar electric energy harvesting presented in this research paper includes battery and supercapacitor management system, MPPT (maximum power point tracking) system and back/boost convertors. On this present work the entire model of off grid electric energy harvesting system and all other functional blocks of that system is implemented in MATLAB Simulink.

  • PDF

QSPR Studies on Impact Sensitivities of High Energy Density Molecules

  • Kim, Chan-Kyung;Cho, Soo-Gyeong;Li, Jun;Kim, Chang-Kon;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4341-4346
    • /
    • 2011
  • Impact sensitivity, one of the most important screening factors for novel high energy density materials (HEDMs), was predicted by use of quantitative structure-property relationship (QSPR) based on the electrostatic potential (ESP) values calculated on the van der Waals molecular surface (MSEP). Among various 3D descriptors derived from MSEP, we utilized total and positive variance of MSEP, and devised a new QSPR equation by combining three other parameters. We employed 37 HEDMs bearing a benzene scaffold and nitro substituents, which were also utilized by Rice and Hare. All the molecular structures were optimized at the B3LYP/6-31G(d) level of theory and confirmed as minima by the frequency calculations. Our new QSPR equation provided a good result to predict the impact sensitivities of the molecules in the training set including zwitterionic molecules.

High Energy Density Dielectric Ceramics Capacitors by Aerosol Deposition (상온 분사 공정을 이용하여 제조한 고에너지 밀도 세라믹 유전체 커패시터)

  • Hyunseok Song;Geon Lee;Jiwon Ye;Ji Yun Jung;Dae-Yong Jeong;Jungho Ryu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.119-132
    • /
    • 2024
  • Dielectric ceramic capacitors present high output power density due to the fast energy charge and discharge nature of dielectric polarization. By forming dense ceramic films with nano-grains through the Aerosol Deposition (AD) process, dielectric ceramic capacitors can have high dielectric breakdown strength, high energy storage density, and leading to high power density. Dielectric capacitors fabricated by AD process are expected to meet the increasing demand in applications that require not only high energy density but also high power output in a short time. This article reviews the recent progress on the dielectric ceramic capacitors with improved energy storage properties through AD process, including energy storage capacitors based on both leadbased and lead-free dielectric ceramics.

The Experimental Study on the Absorbed Energy of Carbon/Epoxy Composite Laminated Panel Subjected to High-velocity Impact (고속 충격을 받는 Carbon/Epoxy 복합재 적층판의 흡수 에너지 예측에 대한 실험적 고찰)

  • Cho, Hyun-Jun;Kim, In-Gul;Lee, Seokje;Woo, Kyeongsik;Kim, Jong-Heon
    • Composites Research
    • /
    • v.26 no.3
    • /
    • pp.175-181
    • /
    • 2013
  • The evaluation and prediction for the absorbed energy, residual velocity, and impact damage are the key things to characterize the impact behavior of composite laminated panel subjected to high-velocity impact. In this paper, the method to predict the residual velocity and the absorbed energy of Carbon/Epoxy laminated panel subjected to high velocity impact are proposed and examined by using quasi-static perforation test and high-velocity impact test. Total absorbed energy of specimen due to the high-velocity impact can be grouped with static energy and kinetic energy. The static energy are consisted of energy due to the failure of the fiber and matrix and static elastic energy, which are related to the quasi-static perforation energy. The kinetic energy are consisted of kinetic energy of moving part of specimen, which are modelled by three modified kinetic model. The high-velocity impact test were conducted by using air gun impact facility and compared with the predicted values. The damage area of specimen were examined by C-scan image. In the high initial impact velocity above the ballistic limit, both the static energy and the kinetic energy are known to be the major contribution of the total absorbed energy.

Effects of high energy diet on growth performance, carcass characteristics, and blood constituents of Hanwoo steers distributed by estimated breeding value for meat quality (고에너지 사양이 육종가 배치별 거세한우의 성장, 도체, 및 혈액성상에 미치는 영향)

  • Chung, Ki-Yong;Lee, Sung- Hwan;Chang, Sun-Sik;Lee, Eun-Mi;Kim, Hyun-Joo;Park, Bo-Hye;Kwon, Eung-Ki
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.4
    • /
    • pp.361-368
    • /
    • 2015
  • This study was to investigate the effect of high energy diet on characteristics of Hanwoo steers distributed by estimated breeding value (EBV). The aim of this experiment was to determine the effect of high energy diet on the high and low beef group distributed by EBV for quality grades. We hypothesized that high energy diet is able to increase quality traits in high EBV groups when fed a high energy diet. A $2{\times}2$ factorial arrangement (High energy, control vs high EBV, low EBV) in a completely random design was used to feed 26 Hanwoo steers. Blood was drawn from each steers from 11 to 28 months. ADG and feed efficiency were not different between high energy and control diet (P>0.05). The level of DMI was greater at calf and early fattening diet in low EBV groups (P<0.05). Serum glucose and tryglyceride conecntrations were increased (P<0.05) by high EBV group from 22 to 28 month old. Serum NEFA concentration were plateau at 24 months at high EBV group and steady reduced by high energy diet (P<0.05). This data indicated that high energy diets increased serum glucose and triglyceride concentrations of high EBV steers at final fattening period.

Analysis Performance of Super Window through Simulation and Verification Experiment (시뮬레이션과 실증실험을 통한 슈퍼윈도우의 성능분석)

  • Peak, Sang-Hun;Lee, Jin-Sung;Cho, Soo;Jang, Cheol-Yong;Sung, Uk-Joo;Suh, Seung-Jik
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1069-1074
    • /
    • 2006
  • Heat loss by window in building occupies about 1/4 of energy amount used building. Therefore, high thermal insulation of windows system can speak as very important part in save energy of building. in this research, After select most suitable frame design and Glazing system for high thermal insulation of windows, execute simulation of mixing frame and Glazing System. Also, manufacture windows with the result and execute verification experiment, with verified simulation, this research evaluated thermal insulation performance of window by Glazing System's change.

  • PDF

Energy Spectrum Measurement of High Power and High Energy (6 and 9 MeV) Pulsed X-ray Source for Industrial Use

  • Takagi, Hiroyuki;Murata, Isao
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.93-99
    • /
    • 2016
  • Background: Industrial X-ray CT system is normally applied to non-destructive testing (NDT) for industrial product made from metal. Furthermore there are some special CT systems, which have an ability to inspect nuclear fuel assemblies or rocket motors, using high power and high energy (more than 6 MeV) pulsed X-ray source. In these case, pulsed X-ray are produced by the electron linear accelerator, and a huge number of photons with a wide energy spectrum are produced within a very short period. Consequently, it is difficult to measure the X-ray energy spectrum for such accelerator-based X-ray sources using simple spectrometry. Due to this difficulty, unexpected images and artifacts which lead to incorrect density information and dimensions of specimens cannot be avoided in CT images. For getting highly precise CT images, it is important to know the precise energy spectrum of emitted X-rays. Materials and Methods: In order to realize it we investigated a new approach utilizing the Bayesian estimation method combined with an attenuation curve measurement using step shaped attenuation material. This method was validated by precise measurement of energy spectrum from a 1 MeV electron accelerator. In this study, to extend the applicable X-ray energy range we tried to measure energy spectra of X-ray sources from 6 and 9 MeV linear accelerators by using the recently developed method. Results and Discussion: In this study, an attenuation curves are measured by using a step-shaped attenuation materials of aluminum and steel individually, and the each X-ray spectrum is reconstructed from the measured attenuation curve by the spectrum type Bayesian estimation method. Conclusion: The obtained result shows good agreement with simulated spectra, and the presently developed technique is adaptable for high energy X-ray source more than 6 MeV.

Comprehensive Analysis of Energy Consumption Rate and New Technology Trend in High-Performance Buildings related with Different Climatic Zones (세계 기후대별 High-Performance Buildings의 에너지 소비 원단위 평가 및 신기술 적용 동향 분석 연구)

  • Kim, Chul-Ho;Lee, Seung-Eon;Kim, Kang-Soo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.11
    • /
    • pp.63-72
    • /
    • 2018
  • In this study, we analyzed high-performance building technologies through a case study of 65 high-performance buildings in the U.S., Europe, Asia and Oceania. In detail, we reviewed the international trend of building energy-saving technology and energy consumption per unit area by analyzing buildings constructed within a 10 year period(2008-018). The primary energy consumption was $48-440kWh/m^2$, and the average value was calculated as $169.3kWh/m^2$. Although some buildings received high certification ratings, they did not meet either Korean or international energy evaluation standards. The system analysis revealed that many energy-saving technologies show various application rates in different countries because the technologies possess different properties. Furthermore, small-area building groups tended to have less primary energy consumption than the medium and large-area buildings, but the area-energy relationship $R^2$ value was analyzed as 0.3161, indicating no clear proportional relationship. Therefore, we propose that it is necessary to maximize the energy savings of buildings by taking into consideration a region's code, climate, building usage, area and space-using patterns to reduce energy and greenhouse gas emissions.

Change of performance, serum metabolite, and carcass characteristics on high energy diet of Hanwoo steers

  • Jang, Sun Sik;Yang, Seung Hak;Lee, Eun Mi;Kang, Dong Hun;Park, Bo Hye;Kim, Hye Jae;Kwon, Eung Gi;Chung, Ki Yong
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.5
    • /
    • pp.810-817
    • /
    • 2016
  • The aim of this experiment was to determine the effect of a high-energy diet on the level of serum metabolites and on carcass characteristics of Hanwoo steers. High energy diets have been used for enhancing intramuscular adipose tissue in high quality beef cattle. However, there is not much information about the physiological reactions to this diet. We hypothesized that a high energy diet would increase blood metabolites and the meat quality of Hanwoo steers during the early and final fattening periods. A $2{\times}2$ factorial arrangement (High, Control, and Early, Final) in a completely randomized design was used to feed 24 Hanwoo steers. Two steers were kept in the same pen and 12 pens were used for the experiment. Blood was drawn from each steer on the first week of every other month from 11 to 28 months. Overall Average Daily Gain (ADG) and feed efficiency were not different between high energy and control diets (p > 0.05). However, Dry Matter Intake (DMI greater with the control diet than DMI with the high energy diet during the final fattening period (p < 0.05). Serum non-esterified fatty acid (NEFA) concentrations were greater in the control diet group than in the high energy diet group during the final fattening period (p < 0.05). However, serum albumin, glucose, total protein, triglyceride, and phosphorus were greater in the high energy group than those of the control group (p < 0.05). Carcass traits or physico-chemical characteristics were not different between high energy diet treatment and the control. These data indicated that a high energy diet (+ 3% TDN) increased serum triglyceride during early fattening periods and decreased non-esterified fatty acids during final fattening periods in Hanwoo steers.