• Title/Summary/Keyword: High elastic

Search Result 1,739, Processing Time 0.031 seconds

Comparison of Lasso Type Estimators for High-Dimensional Data

  • Kim, Jaehee
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.4
    • /
    • pp.349-361
    • /
    • 2014
  • This paper compares of lasso type estimators in various high-dimensional data situations with sparse parameters. Lasso, adaptive lasso, fused lasso and elastic net as lasso type estimators and ridge estimator are compared via simulation in linear models with correlated and uncorrelated covariates and binary regression models with correlated covariates and discrete covariates. Each method is shown to have advantages with different penalty conditions according to sparsity patterns of regression parameters. We applied the lasso type methods to Arabidopsis microarray gene expression data to find the strongly significant genes to distinguish two groups.

An Experimental Study on Physical Properties of High-Strength Concrete Using Sea Sand (해사를 이용한 고강도 콘크리트의 물성실험 연구)

  • 박종협;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.159-163
    • /
    • 1995
  • The purpose of this experimental research is to not only devlop the high-strength concrete using sea and river sand, but also investigatc mechanical properites of the high-strength concrete, such as the elastic modulus, the compressive strength of concrete cyllinder, and etc. Also, rational analytical formula for elastic modulus has been proposed together with those for the splitting tensile strength and the flexural strength to be predicted from compressive strength of conccrete cyllinder.

  • PDF

High concentration ratio approximation of linear effective properties of materials with cubic inclusions

  • Mejak, George
    • Coupled systems mechanics
    • /
    • v.7 no.1
    • /
    • pp.61-77
    • /
    • 2018
  • This paper establish a high concentration ratio approximation of linear elastic properties of materials with periodic microstructure with cubic inclusions. The approximation is derived using first few terms of power series expansion of the solution of the equivalent eigenstrain problem with a homogeneous eigenstrain approximation. Viability of the approximation at high concentration ratios is proved by comparison with a numerical solution of the homogenization problem. To this end some theoretical result of symmetry properties of the homogenization problem are given. Using these results efficient numerical computation on a reduced computational domain is presented.

Study on the Structural and Thermal Properties of Modified Elastic Epoxy with Brittleness (취성 개량형 탄성에폭시의 구조 및 열적특성에 관한 연구)

  • Lee, K.Y.;Lee, K.W.;Min, J.Y.;Choi, Y.S.;Park, D.H.
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.128-130
    • /
    • 2003
  • As toughness-investigation to improve brittleness of existing epoxy resin, elastic-factor of elastic epoxy using TMA (Thermomechanical Analysis), DMTA (Dynamic Mechanical Thermal Analysis) and FESEM (Field Emission Scanning Electron Microsope) for structure-images analysis were investigated. A range of measurement temperature of the TMA, DMTA was changed from -20[$^{\circ}C$] to 200[$^{\circ}C$]. When modifier was ratio of 0[phr], 20[phr], 35[phr], glass transition temperature (Tg) of elastic epoxy was measured through thermal analysis devices. Also, it was investigated thermal expansion coefficient ($\alpha$), modulus and loss factor through DMTA. In addition, it was analyzed structure through FSSEM and made sure elastic-factor of elastic epoxy visually. As thermal analysis results, 20[phr] was superior than 30[phr] thermally and mechanically. Specially, thermal expansion coefficient, modulus, damping properties were excellent. By structure-images analysis through FESEM, we found elastic-factor of elastic epoxy that is not existing epoxy, and proved high impact.

  • PDF

Effect of Weld Elastic Modulus on Simulation of Stress Concentration and Fatigue Life for Boiler Vessel (ADINA & WINLIFE 활용한 압력용기 용접부 피로파괴 해석)

  • Choe, Byung Hak;Lee, Bum Gyu;Shim, Jong Heon;Park, Chan Sung;Kim, Jin Pyo;Park, Nam Gyu
    • Journal of Welding and Joining
    • /
    • v.34 no.5
    • /
    • pp.47-53
    • /
    • 2016
  • The aim of this study is to consider effect of weld elastic modulus on simulations of stress concentration and fatigue life for pressure vessel. The investigations include analysis with ADINA and WINLIFE softwares for whole body model about using condition of the boiler vessel. Values of weld elastic modulus were divided by 5 steps in butt weld area of the boiler vessel body. The stress concentration of the butt weld more was increased in case of higher elastic modulus of weld area because of higher difference of material properties between matrix and weld. It was concluded that the fatigue lives were decreased along increasing stress concentration due to high elastic modulus of weld. The matrix microstructure was estimated as pearlitic structure of ${\alpha}$ ferrite and pearlite. And the microstructures of welds along 5 steps of elastic modulus were estimated as bainitic fine pearlite and martensite as increasing elastic modulus.

Adaptive Control of Spacecraft with Elastic Appendages (유연한 부속물을 가진 우주선의 적응제어)

  • Lee, Ho-Jin;Lee, Keum-Won
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.2
    • /
    • pp.159-163
    • /
    • 2008
  • In this paper, a simplified type of adaptive controller using Nussbaum gain for the control of the spacecrapt with elastic appendages is suggested. This method doesn't need the information of the high frequency components in transfer function. While the pitch angle tracks the desired value by this method, the elastic modes are also stabilized. Only pitch angle and the pitch rate are used for the design of the output feedback controller. Especially all system parameters and the high frequency gain are assumed to be unknown. For design simplicity, a controller is designed by using only the linear part, and it's shown to satisfy the nonlinear system by the simulation with basic explanations. By using the Lyapunov function, the stability of the suggested algorithm is demonstrated, and also the effectiveness of the suggested algorithm is verified by showing the computer simulation results.

  • PDF

Capacity spectrum method based on inelastic spectra for high viscous damped buildings

  • Bantilas, Kosmas E.;Kavvadias, Ioannis E.;Vasiliadis, Lazaros K.
    • Earthquakes and Structures
    • /
    • v.13 no.4
    • /
    • pp.337-351
    • /
    • 2017
  • In the present study a capacity spectrum method based on constant ductility inelastic spectra to estimate the seismic performance of structures equipped with elastic viscous dampers is presented. As the definition of the structures' effective damping, due to the damping system, is necessary, an alternative method to specify the effective damping ratio ${\xi}eff$ is presented. Moreover, damping reduction factors (B) are introduced to generate high damping elastic demand spectra. Given the elastic spectra for damping ratio ${\xi}eff$, the performance point of the structure can be obtained by relationships that relate the strength demand reduction factor (R) with the ductility demand factor (${\mu}$). As such expressions that link the above quantities, known as R - ${\mu}$ - Τ relationships, for different damping levels are presented. Moreover, corrective factors (Bv) for the pseudo-velocity spectra calculation are reported for different levels of damping and ductility in order to calculate with accuracy the values of the viscous dampers velocities. Finally, to evaluate the results of the proposed method, the whole process is applied to a four-storey reinforced concrete frame structure and to a six-storey steel structure, both equipped with elastic viscous dampers.

Modelling of Railway Tracks for Wave Propagation along Railway Tracks at High Frequencies (철로를 따라 전파되는 파동 해석을 위한 고주파수 대역 철로 모델링)

  • Ryue, Jung-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.3
    • /
    • pp.248-257
    • /
    • 2011
  • It was reported recently that railpads can be included as a continuous elastic support of the rail and the model was justified from experiments. In general, however, railpads are installed discretely on sleepers with a regular span. The effect of the discrete railpad was not clearly examined so far in such a high frequency range. In this paper, the effect of the railpads in track modelling for high frequencies is investigated by means of the finite element analysis. To do that, the railpads are regarded as 'a continuous elastic support' and 'a discrete elastic support' in this paper. The dispersion relations and decaying features are predicted and compared between the two models up to 80 kHz.

Dynamic Contact Analysis of a Wheel Moving on an Elastic Beam with a High Speed (탄성 보 위를 고속 주행하는 바퀴의 동접촉 해석)

  • Lee, Ki-Su
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.5
    • /
    • pp.541-549
    • /
    • 2008
  • The dynamic contact between a high-speed wheel and an elastic beam is numerically analyzed by solving the whole equations of motion of the wheel and the beam subjected to the contact condition. For the stability of the numerical solution, the velocity and acceleration constraints as well as the displacement constraint are imposed on the contact point. Through the numerical examples, it is shown that the acceleration contact constraint including the Coriolis and centripetal accelerations are crucial for the numerical stability.

STIFFNESS AND POROSITY EVALUATION USING FIELD VELOCITY RESISTIVITY PROBE

  • Lee, Jong-Sub;Yoon, Hyung-Koo;Choi, Yong-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.24-30
    • /
    • 2010
  • The void ratio and elastic moduli are design parameters used in geotechnical engineering to understand soil behavior. Elastic and electromagnetic waves have been used to evaluate the various soil characteristics due to high resolution. The objective of this study is to evaluate the void ratio and elastic moduli based on elastic wave velocities and electrical resistivity. The Field Velocity Resistivity Probe (FVRP) is developed to obtain the elastic and electromagnetic wave profiles of soil during penetration. The Piezoelectric Disk Elements (PDE) and Bender Elements (BE) are used as transducers for measuring the elastic wave velocities such as compressional and shear wave velocities. The Electrical Resistivity Probe (ERP) is also installed for capturing the electrical resistivity profile. The application test is carried out on the southern coast of the Korean peninsula. The field tests are performed at a depth of 6~20 m, at 10 cm intervals for measuring elastic wave velocities and at 0.5cm intervals for measuring electrical resistivity. The elastic moduli such as constraint and shear moduli are calculated by using measured elastic wave velocities. The void ratios are also evaluated based on the elastic wave velocities and the electrical resistivity. Furthermore, the converted void ratios by using FVRP are compared with the volumetric void ratio obtained by a standard consolidation test. The comparison shows that the void ratios based on the FVPR match the volume based void ratio well. This study suggests that the FVRP may be a useful device to effectively determine the elastic moduli and void ratio in the field.

  • PDF