• Title/Summary/Keyword: High elastic

Search Result 1,755, Processing Time 0.035 seconds

Stress wave propagation in 1-D and 2-D media using Smooth Particle Hydrodynamics method

  • Liu, Z.S.;Swaddiwudhipong, S.;Koh, C.G.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.4
    • /
    • pp.455-472
    • /
    • 2002
  • The paper involves the study on the elastic and elasto-plastic stress wave propagation in the 1-D and 2-D solid media. The Smooth Particle Hydrodynamics equations governing the elastic and elasto-plastic large deformation dynamic response of solid structures are presented. The proposed additional stress points are introduced in the formulation to mitigate the tensile instability inherent in the SPH approach. Both incremental rate approach and leap-frog algorithm for time integration are introduced and the new solution algorithm is developed and implemented. Two examples on stress wave propagation in aluminium bar and 2-D elasto-plastic steel plate are included. Results from the proposed SPH approach are compared with available analytical values and finite element solutions. The comparison illustrates that the stress wave propagation problems can be effectively solved by the proposed SPH method. The study shows that the SPH simulation is a reliable and robust tool and can be used with confidence to treat transient dynamics such as linear and non-linear transient stress wave propagation problems.

Substitution elasticities of the imported and domestically produced pulp and paper (수입펄프.종이와 국산펄프.종이의 대체탄력성)

  • Kim, Se-Bin;Kim, Dong-Jun
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.2
    • /
    • pp.383-391
    • /
    • 2011
  • Traditional international trade theory assumes that import goods and domestically produced goods of the same industry are equal in quality. However the substitutability of the two goods is imperfect. This article estimated the import functions of pulp and paper using econometric and vector autoregressive models, and calculated the elasticities of substitution between imported and domestically produced pulp and paper. The import of pulp is inelastic to import price and domestic price, and elastic to national income in econometric model. And it is inelastic to import price, domestic price and national income in vector autoregressive model. On the other hand, the import of paper is inelastic to domestic price, and elastic to import price and national income in econometric model. And it is inelastic to import price and domestic price, and elastic to national income in vector autoregressive model. The elasticity of substitution between imported and domestically produced pulp was positive, and the elasticity was respectively 0.42 and 0.20 in econometric and vector autoregressive models. This may be because of the high proportion of imports. On the other hand, the elasticity of substitution between imported and domestically produced paper was positive, and the elasticity was respectively 0.75 and 0.81 in econometric and vector autoregressive models. This may be because the quality of imported paper is different from that of domestically produced paper.

Bending analysis of an imperfect advanced composite plates resting on the elastic foundations

  • Daouadji, Tahar Hassaine;Benferhat, Rabia;Adim, Belkacem
    • Coupled systems mechanics
    • /
    • v.5 no.3
    • /
    • pp.269-283
    • /
    • 2016
  • A two new high-order shear deformation theory for bending analysis is presented for a simply supported, functionally graded plate with porosities resting on an elastic foundation. This porosities may possibly occur inside the functionally graded materials (FGMs) during their fabrication, while material properties varying to a simple power-law distribution along the thickness direction. Unlike other theories, there are only four unknown functions involved, as compared to five in other shear deformation theories. The theories presented are variationally consistent and strongly similar to the classical plate theory in many aspects. It does not require the shear correction factor, and gives rise to the transverse shear stress variation so that the transverse shear stresses vary parabolically across the thickness to satisfy free surface conditions for the shear stress. It is established that the volume fraction of porosity significantly affect the mechanical behavior of thick function ally graded plates. The validity of the two new theories is shown by comparing the present results with other higher-order theories. The influence of material parameter, the volume fraction of porosity and the thickness ratio on the behavior mechanical P-FGM plate are represented by numerical examples.

Effect of treatment temperature on mechanical properties of silk textiles made with silk/polyurethane core-spun yarn

  • Bae, Yeon Su;Um, In Chul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.33 no.2
    • /
    • pp.108-112
    • /
    • 2016
  • Silk has been used extensively in textile applications because of its good luster and feel. However, the low elongation and elastic recovery of silk has limited its use in a wider variety of textile applications. In this study, silk textile samples were made with a highly twisted silk/polyurethane core-spun yarn. They were immersed in water and dried at different temperatures, and the effect of treatment temperature on the mechanical properties of the silk textile was examined. It was found that the water temperature strongly affected the morphology and mechanical properties of the silk textile, whereas the drying temperature did not. As the water temperature was increased, the weft silk yarn became tangled and the interval between warp yarns decreased, resulting in shrinkage of the silk textile. When the silk textile was immersed in water at high temperature (i.e., $100^{\circ}C$), the elongation of the textile increased eight-fold as compared to an untreated silk textile. The maximum elastic recovery ratio of the silk textile was 96.7%.

Dynamic Quasi-Elastic Light Scattering Measurement of Biological Tissue

  • Youn, Jong-In;Lim, Do-Hyung
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.169-173
    • /
    • 2007
  • During laser irradiation, mechanically deformed cartilage undergoes a temperature dependent phase transformation resulting in accelerated stress relaxation. Clinically, laser-assisted cartilage reshaping may be used to recreate the underlying cartilaginous framework in structures such as ear, larynx, trachea, and nose. Therefore, research and identification of the biophysical transformations in cartilage accompanying laser heating are valuable to identify critical laser dosimetry and phase transformation of cartilage for many clinical applications. quasi-elastic light scattering was investigated using Ho : YAG laser $(\lambda=2.12{\mu}m\;;\;t_p\sim450{\mu}s)$ and Nd:YAG Laser $(\lambda=1.32{\mu}m\;;\;t_p\sim700{\mu}s)$ for heating sources and He : Ne $(\lambda=632.8nm)$ laser, high-power diode pumped laser $(\lambda=532nm)$, and Ti : $Al_2O_3$ femtosecond laser $(\lambda=850nm)$ for light scattering sources. A spectrometer and infrared radiometric sensor were used to monitor the backscattered light spectrum and transient temperature changes from cartilage following laser irradiation. Analysis of the optical, thermal, and quasi-elastic light scattering properties may indicate internal dynamics of proteoglycan movement within the cartilage framework during laser irradiation.

Evaluation of Elastic-Plastic Fracture Toughness of Aged AISI 316 Steel Using DC-electric Potential Method (직류전위차법을 이용한 AISI 316강 시효재의 탄소성 파괴인성 평가)

  • Lim, Jae-Kyoo;Chang, Jin-Sang;Lino, Y.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.519-527
    • /
    • 1997
  • AISI 316 steel has been used extensively for heater and boiler tube of the structural plants such as power, chemical and petroleum plants under severe operating conditions. Usually, material degradation due to microcrack or precipitation of carbides and segregation of impurity elements, is occured by damage accumulated for long-term service at high temperature in this material. In this study, the effect of aging time on fracture toughness was investigated to evaluate the measurement of material degradation. The elastic-plastic fracture toughness behaviour of AISI 316 steel pipe aged at $550^{\circ}C$for 1h-10000h (the aged material) was characterized using the single specimen J-R curve technique and eletric potential drop method at normal loading rate(load-line displacement speed of 0.2mm/min) in room temperature and air environment. The fracture toughness data from above experiments is compared with the $J_{in}$ obtained from predicted values of crack initiation point using potential drop method.

Surface Characteristics of TiN and ZrN Film Coated STD 61 by Sputtering (스퍼터링법으로 TiN 및 ZrN 피막 코팅된 STD 61의 표면특성)

  • Eun, Sang-Won;Choe, Han-Cheol
    • Journal of Surface Science and Engineering
    • /
    • v.43 no.6
    • /
    • pp.260-265
    • /
    • 2010
  • STD 61 steel has been widely used for tools, metallic mold and die for press working because of its favorable mechanical properties such as high toughness, and creep strength as well as excellent oxidation resistance. The STD 61 tool steel coated with TiN and ZrN by sputtering results in improvement of wear and corrosion resistance. In this study, surface characteristics of TiN and ZrN film coated STD 61 by sputtering were studied by using FE-SEM, EDS, XRD, and XRR and nanoindentation tests. From the results of surface characteristics of coated specimen, the ZrN coated surface showed finer granular than that of TiN coated surface. The coated layer structures of ZrN and TiN were grown to (111) and (200) preferred orientation. From the results of XRR test for surface roughness, density and growth rate of coating film, surface roughness and growth rate of ZrN coated film revealed lower values those of TiN coated film, whereas density of ZrN coated film showed higher values than that of TiN coated film. From the nanohardness and elastic modulus test, nanohardness value and elastic modulus of ZrN coated film became higher than those of TiN coated film.

Analysis of material dependency in an elastic - plastic contact models using contact mechanics approach

  • Gandhi, V.C. Sathish;Kumaravelan, R.;Ramesh, S.;Sriram, K.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.5
    • /
    • pp.1051-1066
    • /
    • 2015
  • The study aims on the effect of material dependency in elastic- plastic contact models by contact analysis of sphere and flat contact model and wheel rail contact model by considering the material properties without friction. The various materials are selected for the analysis based on Young's modulus and yield strength ratio (E/Y). The simulation software 'ANSYS' is employed for this study. The sphere and flat contact model is considered as a flattening model, the stress and strain for different materials are estimated. The simulation of wheel-rail contact model is also performed and the results are compared with the flattening model. The comparative study has also been extended for finding out the mean contact pressure for different materials the E/Y values between 150 and 660. The results show that the elastic-plastic contact analysis for materials up to E/Y=296.6 is depend on the nature of material properties and also for this material the mean contact pressure to yield strength reaches 2.65.

Rational analysis model and seismic behaviour of tall bridge piers

  • Li, Jianzhong;Guan, Zhongguo;Liang, Zhiyao
    • Structural Engineering and Mechanics
    • /
    • v.51 no.1
    • /
    • pp.131-140
    • /
    • 2014
  • This study focuses on seismic behaviour of tall piers characterized by high slender ratio. Two analysis models were developed based on elastic-plastic hinged beam element and elastic-plastic fiber beam element, respectively. The effect of the division density of elastic-plastic hinged beam element on seismic demand was discussed firstly to seek a rational analysis model for tall piers. Then structural seismic behaviour such as the formation of plastic hinges, the development of plastic zone, and the displacement at the top of the tall piers were investigated through incremental dynamic analysis. It showed that the seismic behaviour of a tall pier was quite different from that of a lower pier due to higher modes contributions. In a tall pier, an additional plastic zone may occur at the middle height of the pier with the increase of seismic excitation. Moreover, the maximum curvature reaction at the bottom section and maximum lateral displacement at the top turned out to be seriously out of phase for a tall pier due to the higher modes effect, and thus pushover analysis can not appropriately predict the local displacement capacity.

Eigenfrequencies of advanced composite plates using an efficient hybrid quasi-3D shear deformation theory

  • Guerroudj, Hicham Zakaria;Yeghnem, Redha;Kaci, Abdelhakim;Zaoui, Fatima Zohra;Benyoucef, Samir;Tounsi, Abdelouahed
    • Smart Structures and Systems
    • /
    • v.22 no.1
    • /
    • pp.121-132
    • /
    • 2018
  • This research investigates the free vibration analysis of advanced composite plates such as functionally graded plates (FGPs) resting on a two-parameter elastic foundations using a hybrid quasi-3D (trigonometric as well as polynomial) higher-order shear deformation theory (HSDT). This present theory, which does not require shear correction factor, accounts for shear deformation and thickness stretching effects by a sinusoidal and parabolic variation of all displacements across the thickness. Governing equations of motion for FGM plates are derived from Hamilton's principle. The closed form solutions are obtained by using Navier technique, and natural frequencies are found, for simply supported plates, by solving the results of eigenvalue problems. The accuracy of the present method is verified by comparing the obtained results with First-order shear deformation theory, and other predicted by quasi-3D higher-order shear deformation theories. It can be concluded that the proposed theory is efficient and simple in predicting the natural frequencies of functionally graded plates on elastic foundations.