• Title/Summary/Keyword: High elastic

Search Result 1,755, Processing Time 0.101 seconds

A Study on the Fundamental Properties of High-Strength Concrete using Silica Fume (실리카흄 혼합 고강도 콘크리트의 기초물성에 관한 연구)

  • 문한영;김진철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.10a
    • /
    • pp.21-25
    • /
    • 1991
  • For the purpose of improving the compressive strength of concrete, the high strength concrete which have the compressive strength about 800kg/$\textrm{cm}^2$ were made by using silica fume and high range water reducing admixture on reducing the water-cement ratio. But the facts that the slump loss of high strength concrete was high and the tensile strength and elastic modulus were not improved enough are indicated to problems which must be solved.

  • PDF

Physical Properties of Shock-Absorbing Materials Made of Pulp Fibers for Packaging (포장완충재용 펄프 섬유 압출물의 물리적 특성)

  • Song, Dae-Bin;Kim, Chul-Hwan;Jung, Hyo-Suk;Lee, Young-Min;Kim, Jae-Ok;Kim, Gyeong-Yun;Park, Chong-Yawl
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.3
    • /
    • pp.41-49
    • /
    • 2005
  • Styrofoam as shock-absorbing materials for packaging has been regarded as one of non-biodegradable products leading to soil contamination at a landfill and release of dioxine during its incineration. For avoiding severe burdens on our environments by styrofoam, it must be replaced by environment-friendly materials. In order to evaluate availability of pulp fibers as a substitute for styrofoam, various extrusion processes were applied for making optimal biodegradable products. Then thermomechanical pulp fibers made of Pinus radiata and Pinus rigida were uniformly mixed with other additives such as starch and polyvinyl alcohol prior to expansion. The physical properties of the final products were examined by measuring expansion efficiency, compression strength, and elastic modulus. Wheat starch played a key role to maintain optimal flowing conditions within the barrel of the extruder irrespective of addition of soluble starch and polyvinyl alcohol. However, as the amounts of wheat starch in raw-materials increased, the elastic modulus of the expanded materials greatly increased. High elastic modulus is not suitable as shock-absorbing products for packaging. Thus the wheat starch must be added at a minimum if possible, that is, below 20% based on oven-dried weight of pulp fibers. the elastic modulus of the expanded products was decreased as their moisture contents increased. For the products containing 20% wheat starch, the lowest elastic modulus, 844.64 kPa was obtained under 10% of the moisture content. This was similar to that of styrofoam.

Measurements of the Lidar Ratio for Asian Dust and Pollution Aerosols with a Combined Raman and Back-scatter Lidar (라만-탄성 라이다를 이용한 황사 및 오염 에어러솔의 라이다 비 측정 연구)

  • Yoon, S.C.;Lee, Y.J.;Kim, S.W.;Kim, M.H.;Sugimoto, N.
    • Atmosphere
    • /
    • v.20 no.4
    • /
    • pp.483-494
    • /
    • 2010
  • The vertical profiles of the extinction coefficient, the backscatter coefficient, and the lidar ratio (i.e., extinction-to-backscattering ratio) for Asian dust and pollution aerosols are determined from Raman (inelastic) and elastic backscatter signals. The values of lidar ratios during two polluted days is found between 52 and 82 sr (July 22, 2009) and 40~60 sr (July 31, 2009) at 52 nm, with relatively low value of particle depolarization ratio (<5%) and high value of sun photometer-derived Angstrom exponent (> 1.2). However, lidar ratios between 25 and 40 sr are found during two Asian dust periods (October 20, 2009 and March 15, 2010), with 10~20% of particle depolarization ratio and the relatively low value of sun photometer-derived Angstrom exponent (< 0.39). The lidar ratio, particle depolarization ratio and color ratio are useful optical parameter to distinguish non-spherical coarse dust and spherical fine pollution aerosols. The comparison of aerosol extinction profiles determined from inelastic-backscatter signals by the Raman method and from elastic-backscatter signals by using the Fernald method with constant value of lidar ratio (50 sr) have shown that reliable aerosol extinction coefficients cannot be determined from elastic-backscatter signals alone, because the lidar ratio varies with aerosol types. A combined Raman and elastic backscatter lidar system can provide reliable information about the aerosol extinction profile and the aerosol lidar ratio.

A Study on the Measurement of the Elastic Moduli and Characteristics for Space Adhesives (우주용 접착제의 탄성계수 측정 및 특성 규명에 관한 연구)

  • Kim, Hyun-Jung;Seo, Yu-Deok;Park, Sang-Hoon;Kim, Ji-Yeon;Uhm, Tae-Kyoung;Lee, Sang-Ryool;Lee, Seung-Hoon;Lee, Deog-Gyu;Lee, Eung-Shik;Jang, Hong-Sul;Jung, Dae-Jun;Youn, Sung-Kie
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.101-106
    • /
    • 2007
  • The optical performance of the mirror for satellite camera is highly dependent on the adhesive properties between the mirror and its support. Therefore, in order to design a mirror with high optical performance, the mechanical properties of adhesives should be well defined. In this paper, the mechanical properties of three kinds of space adhesives are studied. Elastic moduli of the adhesives are determined by tensile tests. Stress-strain relation is obtained by using exponential curve fitting for the adhesive which shows non-linear behavior. In case of the linear behavior material, elastic modulus is calculated through linear curve fitting. For the tensile tests, several points have been selected in the operating temperature range of the adhesive. The elastic modulus of each adhesive is expressed as a function of temperature. Characteristics of the adhesives are discussed regarding their temperature sensitivity.

Strength of Crack Healed-Specimen and Elastic Wave Characteristics of Al2O3/SiC Composite Ceramics (알루미나 탄화규소 복합세라믹스 균열치유재의 강도와 탄성파 특성)

  • Kim, Hae-Suk;Kim, Mi-Gyeong;Kim, Jin-Uk;An, Seok-Hwan;Nam, Gi-U
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.425-431
    • /
    • 2007
  • [ $Al_2O_3/SiC$ ]composite ceramics were sintered to evaluate the bending strength and elastic wave characteristics. The three-point bending test was carried out under room temperature. The elastic wave was detected by fracture wave detector. The crack healing behavior was investigated from 1373 K to 1723 K. The bending strength of $Al_2O_3/SiC$ composite by nanocomposite is higher than that of $Al_2O_3$ monolithic. Crack-healing behavior depended on an amount of additive powder $Y_2O_3$. In $Al_2O_3/SiC$ composite ceramics with 3 wt. % $Y_2O_3$ for additive powder, the bending strength at 1573 K is about 100% increase than that of the smooth specimens. From the result of wavelet analysis of elastic wave signal, the smooth specimen and heat treated specimen of $Al_2O_3$ monolithic and $Al_2O_3/SiC$ composite ceramics showed characteristics of frequency about 58 kHz. The strength of $Al_2O_3/SiC$ composite ceramics was a little higher than those of $Al_2O_3$ monolithic. The dominant frequencies were high with increasing of $Y_2O_3$ for additive powder. The dominant frequencies had direct connection with the bending strength.

Predicting Uniaxial Compressive Strength and Elastic Modulus Using Brazilian Test (Brazilian시험을 이용한 일축압축강도, 탄성계수의 추정 (I))

  • Min, Tuk-Ki;Moon, Jong-Kyu;Ro, Jai-Sool
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.10
    • /
    • pp.131-146
    • /
    • 2008
  • Many attempts have been made to determine the uniaxial compressive strength and elastic modulus of regular specimens of rock indirectly. But little experimental work has been done to find above two parameters using Brazilian test value up to date. This paper employs Brazilian test value to estimate uniaxial compressive strength and elastic modulus of sedimentary (sand stone, shale) and metamorphic (gneiss) rocks. High reliability of Brazilian test has been supported by the established conclusions drawn from point load test and Schmidt hammer strike values. It has also been found that this method can be applied easily and rapidly to the estimation of uniaxial compressive strength and elastic modulus of rock cores when direct tests are not available.

Design of lattice structure for controlling elastic modulus in metal additive manufacturing (금속 적층제조에서의 격자구조 설계변수에 따른 탄성계수 분석)

  • In Yong Moon;Yeonghwan Song
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.276-281
    • /
    • 2023
  • With the high design freedom of the additive manufacturing process, there is a growing interest in multi-dimensional lattice structures among researchers, who are studying intricate structural modeling that is challenging to produce using conventional manufacturing processes. In the case of titanium alloy implants for human insertion, a multi-dimensional lattice structure is employed to ensure compatibility with bones, adjusting strength and elastic modulus to levels similar to those of bones. Therefore, securing a database on the mechanical properties based on lattice structure design variables and the development of related simulation techniques are believed to efficiently facilitate the customization of implants. In this study, lattice structures were additively manufactured using Ti-6Al-4V alloy, and the elastic modulus was measured based on design parameters. The results were compared with simulations, and an approach to finite element analysis for accurate prediction of the elastic modulus was proposed.

Fast Response Time in IPS Mode Using LC mixtures with High Elastic Constant

  • Lim, C.S.;Lee, J.H.;Choi, H.C.;Oh, C.H.;Yeo, S.D.;Lee, Seung-Eun;Jin, Min-Ok;Kang, Doo-Jin;Klasen-Memmer, M.;Tarumi, K.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.843-846
    • /
    • 2004
  • For the fast growing Liquid Crystal Display (LCD) TV market, it is essential to make the LCD panels to show moving images without any visual difficulties such as blurring or tailing. Owing to reduction of the cell gap and the improved Liquid Crystal (LC) mixtures with low viscosity, it is possible that our S-IPS TFT-LCDs feature a response time (R/T) as fast as 1-frame time (16ms) for a white-black operation and less than a 16rns in all gray levels without Over Driving Circuit (ODC) technology. Currently, mass production of the large size IPS panels with high speed has been successfully achieved. In order to achieve faster response time, new LC mixtures have been developed, optimizing the physical properties of rotational viscosity (${\gamma}$1) and elastic constants (Kii). Also, the LC mixtures with high elastic constant allow us to increase the cell gap. In this paper, realization of fast switching time in IPS mode with optimized '${\gamma}$1/Kii' parameter in the LC mixtures forms the core of this paper.

  • PDF

Rheological Properties of Rough Rice (II) -Compressive Creep of Rough Rice Kernel- (벼의 리올러지 특성(特性)(II) -곡립(穀粒)의 압축(壓縮)크리이프-)

  • Kim, M.S.;Kim, S.R.;Park, J.M.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.3
    • /
    • pp.219-229
    • /
    • 1990
  • The compression creep behavior of grains when loaded depends not only on load but also on duration of load application. The most common methods of studying the load-time characteristics of agricultural products is by employing rheological models such as Burger's model. However it is sometimes not sufficient to describe the viscoelastic behavior of grains to be Burger's model. For this reason, this study was conducted to develop the rheological model which represented the creep compliance response of the rough rice kernel and was a function of initial stress applied and time. The effects of the initial stress applied and the moisture content on the compression creep behavior of the rough rice kernel were analyzed. The results were obtained from the study as follows: 1. Since the viscoelastic behavior of the rough rice kernel was nonlinear, the transient and steady state creep compliance was satisfactorily modelled as follows: $$J({\sigma},t)=A{\sigma}^B[C+Dt-exp(-Ft)]$$ But, for the every stress applied, the compression creep behavior of the samples tested can be well described by Burger's model respectively. 2. The creep compliance, the instantaneous elastic strain, the retarded elastic strain and the viscous strain of the sample tested generally increased in magnitude with increasing the applied initial stress and the moisture content used in the tests. At low moisture content, the creep compliance for the Japonica-type rough rice kernel Was a little higher than those for Indica-type and at high moisture content, vice versa at high moisture content. 3. The retardation times of the samples had not an uniform tendency by the initial stress and the moisture content. The retardation times ranged from 0.66 to 6.76 seconds, and the creep progressed from transient to steady state at a relatively high rate. 4. The less viscous strain than the instantaneous elastic strain for the samples tested indicated that rough rice kernel behaved as a viscoelastic body characterized by elasticity than viscosity.

  • PDF

Propagation characteristics of ultrasonic guided waves in tram rails

  • Sun, Kui;Chen, Hua-peng;Feng, Qingsong;Lei, Xiaoyan
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.435-444
    • /
    • 2020
  • Ultrasonic guided wave testing is a very promising non-destructive testing method for rails, which is of great significance for ensuring the safe operation of railways. On the basis of the semi-analytical finite element (SAFE) method, a analytical model of 59R2 grooved rail was proposed, which is commonly used in the ballastless track of modern tram. The dispersion curves of ultrasonic guided waves in free rail and supported rail were obtained. Sensitivity analysis was then undertaken to evaluate the effect of rail elastic modulus on the phase velocity and group velocity dispersion curves of ultrasonic guided waves. The optimal guided wave mode, optimal excitation point and excitation direction suitable for detecting rail integrity were identified by analyzing the frequency, number of modes, and mode shapes. A sinusoidal signal modulated by a Hanning window with a center frequency of 25 kHz was used as the excitation source, and the propagation characteristics of high-frequency ultrasonic guided waves in the rail were obtained. The results show that the rail pad has a relatively little influence on the dispersion curves of ultrasonic guided waves in the high frequency band, and has a relatively large influence on the dispersion curves of ultrasonic guided waves in the low frequency band below 4 kHz. The rail elastic modulus has significant influence on the phase velocity in the high frequency band, while the group velocity is greatly affected by the rail elastic modulus in the low frequency band.