• Title/Summary/Keyword: High elastic

Search Result 1,736, Processing Time 0.033 seconds

Study on the Thermal Properties and High Impact of Elastic Epoxy Blend System (탄성에폭시 블렌드 시스템의 열적 특성 및 내충격성에 관한 연구)

  • 이경용;이관우;민지영;최용성;박대희
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.4
    • /
    • pp.192-199
    • /
    • 2004
  • Elastic-factor of elastic epoxy were investigated by TMA (Thermomechanical Analysis), DMTA (Dynamic Mechanical Thermal Analysis), TGA (Thermogravimetric Analysis) and FESEM (Field Emission Scanning Electron Microscope) for structure-images analysis as toughness-investigation to improve brittleness of existing epoxy resin. A range of measurement temperature of the TMA and DMTA was changed from -20($^{\circ}C$) to $200^{\circ}(C)$, and TGA was changed from $0^{\circ}(C)$ to $600^{\circ}(C)$. Glass transition temperature (Tg) of elastic epoxy was measured through thermal analysis devices with the content of 0(phr), 20(phr) and 35(phr). Also, thermal expansion coefficient (a), high temperature, modulus and loss factor were investigated through TMA, TGA, and DMTA. In addition, the structure of specimens was analyzed through FESEM, and then elastic-factor of elastic epoxy was visually showed by FESEM. As thermal analysis results, 20(phr) was more excellent than 30(phr) thermally and mechanically. Specially, thermal expansion coefficient, high temperature, modulus, and damping properties were excellent. By structure-images analysis through FESEM, we found elastic-factor of elastic epoxy that is not existing epoxy, and proved high impact.

A Proposal of an Elastic Modulus Equation for High-Strength and Ultra High-Strength Concrete

  • Jang, II-Young;Park, Hoon-Kyu;Yoon, Young-Soo
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.1E
    • /
    • pp.43-48
    • /
    • 2006
  • This paper presents an elastic modulus equation more appropriate for predicting the elastic modulus of structural materials designed for and made of high- and ultra high-strength concrete under current domestic situation in Korea. In order to validate and assess the proposed elastic modulus equation, more than 400 laboratory test data available in the domestic literature on compressive strength of concrete in the range between 400 to 1,000 $kgf/cm^2$ were used and analyzed statistically. Comparison analyses of the proposed elastic modulus equation with previously suggested equations of ACI363R, CEB-FIP, NS3473 and New-RC are also presented to demonstrate its applicability in domestic practice.

Characterization of Elongation Behavior According to Sewing Conditions for Elastic Bands on Woven Fabrics (비신축성 직물의 고무 밴드 봉제 조건에 따른 신장 특성 분석)

  • Eom, Ran-i;Lee, Yejin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.45 no.4
    • /
    • pp.648-660
    • /
    • 2021
  • This study analyzes how sewing conditions for elastic bands on woven fabrics affect elongation. The directions of the elastic bands were vertical, horizontal, vertical and horizontal crossing, and horizontal and vertical crossing. Intervals between the elastic bands were 3.0 cm and 6.0 cm. The woven fabric was tailored for the elastic band sewing using warp, weft, and bias. Consequently, it was possible to visually confirm elongation differences according to the sewing condition of the elastic bands. A detailed examination demonstrated that the horizontal or vertical placement of elastic bands tailored in a crosswise direction produces high vertical elongation and low horizontal contraction. However, elastic bands sewed in crossing directions, regardless of warp and weft directions, resulted in both high vertical elongation and high horizontal contraction. In all cases, the more elastic bands were used, the higher the horizontal elongation. In conclusion, appropriate placements of elastic bands on woven fabric increases motion convenience.

Quantitative Analysis of Elastic Recovery Behavior after Bending of Ultra High Strength Steel Sheet: Spring-back or Spring-go (유한요소법을 이용한 초고강도 판재 굽힘에 따른 후변형의 정량적 분석: Spring-back or Spring-go)

  • Kwak, E.J.;Lee, K.;Suh, C.H.;Lim, Y.H.
    • Transactions of Materials Processing
    • /
    • v.20 no.6
    • /
    • pp.456-460
    • /
    • 2011
  • A major source of difficulty in die design for high strength steel is the high level of elastic recovery during unloading. The degree of elastic recovery is affected by factors such as material strength, bending angle, punch's corner radius and sheet thickness. Finite Element Method was used in the present work to quantitatively analyze the elastic recovery for various combinations of these parameters. In some cases elastic recovery happened in reverse direction. This phenomenon, which we call spring-go, was explained via changes in stress distribution in the panel occurring in the forming process.

Comparison of gait ability according to types of assistive device for ankle joint of chronic hemiplegic stroke survivors (발목관절 보조 도구에 따른 만성 뇌졸중 편마비 장애인의 보행 비교)

  • Park, Dong-Chun;Jung, Jung-Hee;Kim, Won-Deuk;Son, Il-Hyun;Lee, Yang-Jin;Lee, GyuChang
    • Journal of Korean Physical Therapy Science
    • /
    • v.28 no.2
    • /
    • pp.30-39
    • /
    • 2021
  • Background: The purpose of this study was to compare the differences in gait and mobility according to the types of assistive device for ankle joint including ankle foot orthosis (AFO), non-elastic tape, elastic tape, and high ankle shoes in chronic hemiplegic stroke survivors. Design: A cross-over design. Methods: Twelve hemiplegic stroke survivors participated in this study, and they walked under 5 different conditions including bare feet, wearing a AFO, wearing a non-elastic tape, wearing a elastic tape, and wearing a high ankle shoes. During the participants walked, the spatio-temporal gait analysis and mobility examinations were performed. For the spatio-temporal gait analysis (gait velocity and cadence, step length, stride length, and single and double leg support time) and mobility examinations, the gait mat, TUG and TUDS were used. Results: As s results, on the AFO, non-elastic tape, elastic tape, and high ankle shoes, there were significantly differences in the all spatio-temporal gait parameters, TUG, and TUDS compared to barefoot (p<0.05). In particular, all spatio-temporal gait parameters, TUG, TUDS were significantly improved with AFO compared to barefoot. TUG was significantly improved with AFO compared to non-elastic tape, TUG and TUDS were significantly improved with AFO compared to elastic tape, gait velocity was significantly improved with non-elastic tape compared to high ankle shoes, gait velocity and TUG were significantly improved with elastic tape compared to high ankle shoes, and TUDS was significantly improved with non-elastic tape compared to elastic tape. Conclusion: The AFO, non-elastic tape, elastic tape, and high ankle shoes showed a positive effect on gait and mobility compared to barefoot, and among them, wearing AFO was most effective for improving gait and mobility of chronic hemiplegic stroke survivors.

Temperature Dependence on Elastic Constant of SiC Ceramics (SiC 세라믹스 탄성률의 온도 의존성)

  • Im, Jong-In;Park, Byoung-Woo;Shin, Ho-Yong;Kim, Jong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.491-497
    • /
    • 2010
  • In this paper, we employed the classical molecular dynamics simulations using Tersoff's potential to calculate the elastic constants of the silicon carbide (SiC) crystal at high temperature. The elastic constants of the SiC crystal were calculated based on the stress-strain characteristics, which were drawn by the simulation using LAMMPS software. At the same time, the elastic constants of the SiC ceramics were measured at different temperatures by impulse excitation testing (IET) method. Based on the simulated stress-strain results, the SiC crystal showed the elastic deformation characteristics at the low temperature region, while a slight plastic deformation behavior was observed at high strain over $1,000^{\circ}C$ temperature. The elastic constants of the SiC crystal were changed from about 475 GPa to 425 GPa by increasing the temperature from RT to $1,250^{\circ}C$. When compared to the experimental values of the SiC ceramics, the simulation results, which are unable to obtain by experiments, are found to be very useful to predict the stress-strain behaviors and the elastic constant of the ceramics at high temperature.

An Elastic Joint Manipulator for a Human friendly robot

  • Takahashi, Takayuki;Murayama, Yasushi;Wang, Zhi-Dong;Nakano, Eiji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.44.3-44
    • /
    • 2001
  • This articles describes a novel design elastic joint manipulator for a mobile robot, which works in an office environment with humans. The primary goal of this manipulator design is safeness on collision and contact. To achieve this, each joint is made of an elastic element and this is driver with a high ratio gear tram. The performance was verified, however, it has a serious drawback. It produce vibration, due to the elastic joints and high ratio gear train. We found that a sliding mode controller has an excellent performance for reducing such vibration. Results of computer simulation and experiments are shown.

  • PDF

Effects of elastic foundation on the dynamic stability of cylindrical shells

  • Ng, T.Y.;Lam, K.Y.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.2
    • /
    • pp.193-205
    • /
    • 1999
  • A formulation for the dynamic stability analysis of cylindrical shells resting on elastic foundations is presented. In this previously not studied problem, a normal-mode expansion of the partial differential equations of motion, which includes the effects of the foundation as well as a harmonic axial loading, yields a system of Mathieu-Hill equations the stability of which is analyzed using Bolotin's method. The present study examines the effects of the elastic foundation on the instability regions of the cylindrical shell for the transverse, longitudinal and circumferential modes.

Potentials of elastic seismic design of twisted high-rise steel diagrid frames

  • Kim, Seonwoong;Lee, Kyungkoo
    • Steel and Composite Structures
    • /
    • v.18 no.1
    • /
    • pp.121-134
    • /
    • 2015
  • This paper is to investigate the potentials of the elastic seismic design of twisted high-rise steel diagrid frame buildings in the strong wind and moderate/low seismicity regions. First, the prototypes of high-rise steel diagrid frames with architectural plans that have a twist angle of 0 (regular-shaped), 1, and 2 degrees were designed to resist wind. Then, the effects of the twist angle on the estimated quantities and structural redundancies of the diagrid frames were examined. Second, the seismic performance of the wind-designed prototype buildings under a low seismicity was evaluated. The response spectrum analysis was conducted for the service level earthquake (SLE) having 43-year return period and the maximum considered earthquake (MCE) having 2475-year return period. The evaluation resulted that the twisted high-rise steel diagrid frames resisted the service level earthquake elastically and most of their diagrid members remained elastic even under the maximum considered earthquake.

A Study on the Springback of High-Strength TRIP Steel (고강도 TRIP 강의 스프링백에 대한 연구)

  • 김용환;김태우;이영선;이정환
    • Transactions of Materials Processing
    • /
    • v.13 no.5
    • /
    • pp.409-414
    • /
    • 2004
  • TRIP steel has got attention in automobile industry because of its high strength and high formability. However, the information on deformation behavior of TRIP steel, including bending and springback, is not enough until now. In this research, the V-die bending experiment and analysis have been done to obtain the information of springback of TRIP steel. And a new numerical method, where elastic modulus is varied with the change of the strain, was suggested. Tensile test for TRIP steel was done to get tensile properties as well as strain dependency of elastic modulus of the material. Strain-dependency of elastic modulus was used the numerical analysis of V-die bending and unbending process to predict springback amount. The results were compared with experiment, showing reasonable agreement. Through the analysis of V-die bending as well as draw bending of TRIP steel, the proposed scheme with variable elastic modulus was proven to well predict the deformation behavior of TRIP steel during bending and springback.