• Title/Summary/Keyword: High efficiency operation

Search Result 1,918, Processing Time 0.03 seconds

A Study on Increasing the Efficiency of Biogas Production using Mixed Sludge in an Improved Single-Phase Anaerobic Digestion Process (개량형 단상 혐기성 소화공정에서의 혼합슬러지를 이용한 바이오가스 생산효율 증대방안 연구)

  • Jung, Jong-Cheal;Chung, Jln-Do;Kim, San
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.588-597
    • /
    • 2016
  • In this study, we attempted to improve the biogas production efficiency by varying the mixing ratio of the mixed sludge of organic wastes in the improved single-phase anaerobic digestion process. The types of organic waste used in this study were raw sewage sludge, food wastewater leachate and livestock excretions. The biomethane potential was determined through the BMP test. The results showed that the biomethane potential of the livestock excretions was the highest at $1.55m^3CN4/kgVS$, and that the highest value of the composite sample, containing primary sludge, food waste leachate and livestock excretions at proportions of 50%, 30% and 20% respectively) was $0.43m^3CN4/kgVS$. On the other hand, the optimal mixture ratio of composite sludge in the demonstration plant was 68.5 (raw sludge) : 18.0 (food waste leachate) : 13.5 (livestock excretions), which was a somewhat different result from that obtained in the BMP test. This difference was attributed to the changes in the composite sludge properties and digester operating conditions, such as the retention time. The amount of biogas produced in the single-phase anaerobic digestion process was $2,514m^3/d$ with a methane content of 62.8%. Considering the value of $2,319m^3/d$ of biogas produced as its design capacity, it was considered that this process demonstrated the maximum capacity. Also, through this study, it was shown that, in the case of the anaerobic digestion process, the two-phase digestion process is better in terms of its stable tank operation and high efficiency, whereas the existing single-phase digestion process allows for the improvement of the digestion efficiency and performance.

The Study for an Improved Methodology of Rail Investment Rating System (철도투자평가체계 개선방안의 고찰)

  • Roh, Byoung-Kuk;Kim, Young-Bea;Jin, Hak-Ki
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2192-2204
    • /
    • 2011
  • Recently, The government is actively transit road-oriented Traffic System to the eco-friendly and high-efficiency railroad-oriented transportation system for the sustainable green growth. The second plan of Nationwide Railway Network which has been officially announced rearrange to integration, multi-core, open architecture country by the railway network and integrate to the one mega city that rink an important city in one hour 30 minute. But the railroad industry is disadvantageous when it compares with the road industry on the ground that railroad industry peculiarities(a cost-benefit analysis, an environment value, etc) have not reflected in the (preliminary) feasibility study for SOC industry. The government establish Improved methodology of Rail Investment Rating System and improved preliminary feasibility study in railroad project by introduction many content(analysis periods, rate of discount, the benefits of shortening of transit hours, the estimation of traffic accident reduction benefits, investment cost of vehicle substitution and operation and maintenance cost of high speed rail) about the Improved methodology of Rail Investment Rating System. This study is intended to consideration the key content that was included in the Improved methodology of Rail Investment Rating System. In addition, the points to be considered for additional study have been reviewed in this study. We hope we will carry out make a reasonable and objective Rail Investment Rating System and to perform the railway industry of the virtuous cycle such improvement plans are reflected at a hereafter railroad section.

  • PDF

Study on Combined Use of Inclination and Acceleration for Displacement Estimation of a Wind Turbine Structure (경사 및 가속도 계측자료 융합을 통한 풍력 터빈의 변위 추정)

  • Park, Jong-Woong;Sim, Sung-Han;Jung, Byung-Jin;Yi, Jin-Hak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • Wind power systems have gained much attention due to the relatively high reliability, good infrastructures and cost competitiveness to the fossil fuels. Advances have been made to increase the power efficiency of wind turbines while less attention has been focused on structural integrity assessment of structural sub-systems such as towers and foundations. Among many parameters for integrity assessment, the most perceptive parameter may be the induced horizontal displacement at the hub height although it is very difficult to measure particularly in large-scale and high-rise wind turbine structures. This study proposes an indirect displacement estimation scheme based on the combined use of inclinometers and accelerometers for more convenient and cost-effective measurements. To this end, (1) the formulation for data fusion of inclination and acceleration responses was presented and (2) the proposed method was numerically validated on an NREL 5 MW wind turbine model. The numerical analysis was carried out to investigate the performance of the propose method according to the number of sensors, the resolution and the available sampling rate of the inclinometers to be used.

3-Phase Power Quality Disturbance Generator with Phase Jump Function (위상급변 기능을 갖는 3상 전력품질 외란발생기)

  • Lee, B.C.;Choi, S.H.;Paeng, S.H.;Park, S.D.;Choi, N.S.;Kim, I.D.;Chun, T.W.;Kim, H.G.;Nho, E.C.
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.463-470
    • /
    • 2006
  • This paper deals with a new 3-phase power quality disturbance generator. The proposed generator can provide phase jump as well as voltage sag, swell, outage, unbalance, and over and under voltage. The operating principle of the generator is described in each mode of disturbance. The magnitude of the phase jump is analysed and it is found that the magnitude is the function of the turn-ratios of the transformers consisting the generator. The scheme has simple structure compared with the conventional one, and the major components of the proposed scheme are SCR thyristor and transformer, which guarantees high reliability and cost-effective implementation of the generator. Furthermore, high efficiency can be obtained because there is no PWM switching of the semiconductor devices, and it is easy to control the system. Simulations are carried out to confirm the operation in each disturbance mode, and experiments has been done with 5kVA power rating. The usefulness of the proposed scheme is verified through simulation and experimental results. It is expected that the scheme can be applied to the performance test of the custom power devices such as UPS, DVR, DSTATCOM, and SSTS with cost-effective system.

Fuel cell system for SUAV using chemical hydride - I. Lightweight hydrogen generation and control system (화학수소화합물을 이용한 소형 무인항공기용 연료전지 시스템 연구 - I. 경량 수소 발생 및 제어 장치)

  • Hong, Ji-Seok;Jung, Won-Chul;Kim, Hyeon-Jin;Lee, Min-Jae;Jeong, Dae-Seong;Jeon, Chang-Soo;Sung, Hong-Gye;Shin, Seock-Jae;Nam, Suk-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.3
    • /
    • pp.226-232
    • /
    • 2013
  • A compact hydrogen generation device of fuel cell system using chemical hydride storage technique was designed to fit the propulsion device requirement of a small unmanned aerial vehicle(SUAV). For high efficient, compact, and lightweight hydrogen generation control device, the Co-B catalyst hydrogen conversion rate by $NaBH_4$ aqueous solution flux is measured so that the proper amount of Co-B catalyst for maximum hydrogen generation of 100W stack was proposed. A compact hydrogen generation device is controlled by pump's on/off using its own internal pressure and consumes fuel in high efficiency through a dead-end type fuel cell. The fuel cell system has stable operation for a planed flight profile. The system operates up to maximum 7 hours and at least 4 hours for tough flight profiles.

EPerformance of high-rate anaerobic sequencing batch reactor treating sewage sludge and food waste (연속 회분식 혐기성 공정을 이용한 하수슬러지와 음식물쓰레기의 혼합소화 거동 특성)

  • Kim, Hyun-Woo;Han, Sun-Kee;Shin, Hang-Sik
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.12 no.1
    • /
    • pp.75-83
    • /
    • 2004
  • Temperature-phased anaerobic digestion (TPAD), anaerobic sequencing batch reactor (ASBR), and co-digestion technologies were combined together in order to overcome low efficiencies of conventional anaerobic sewage sludge digestion processes. In the performance, TPAD-ASBR process showed high VS removal efficiency over 60% up to the organic loading rate (OLR) of 2.7 g VS/L/d. The first-stage of TPAD-ASBR and control system played a most significant role in VS destruction and methane production. Methane production rate (0.79 l $CH_4/L/d$) of the system was higher than that (0.59 l $CH_4/L/d$) of the control system. The substrate characteristics of the sewage sludge, such as low VS concentration (1.5%, w/w) and biodegradability, were properly improved by the addition of food waste as a co-substrate, leading to more efficient VS removal and methane production. With several track studies, it was revealed that the independent solid retention time (SRT) of those systems prevented untreated particles from outflowing and also, extended the retention time of the active biomass for further degradation. Consequently, it was confirmed that the sequencing batch operation of the TPAD process using co-substrate was a promising alternative for the recycling of sewage sludge with low VS content.

  • PDF

Application of coagulation pretreatment for enhancing the performance of ceramic membrane filtration (세라믹 막여과의 성능향상을 위한 응집 전처리의 적용)

  • Kang, Joon-Seok;Song, Jiyoung;Park, Seogyeong;Jeong, Ahyoung;Lee, Jeong-Jun;Seo, Inseok;Chae, Seonha;Kim, Seongsu;Kim, Han-Seung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.6
    • /
    • pp.501-510
    • /
    • 2017
  • In this study, it is estimated that ceramic membrane process which can operate stably in harsh conditions replacing existing organic membrane connected with coagulation, sedimentation etc.. Jar-test was conducted by using artificial raw water containing kaolin and humic acid. It was observed that coagulant (A-PAC, 10.6%) 4mg/l is the optimal dose. As a results of evaluation of membrane single filtration process (A), coagulation-membrane filtration process (B) and coagulation-sedimentation-membrane filtration process (C), TMP variation is stable regardless of in Flux $2m^3/m^2{\cdot}day$. But in Flux $5m^3/m^2{\cdot}day$, it show change of 1-89.3 kpa by process. TMP of process (B) and (C) is increased 11.8, 0.6 kpa each. But, the (A) showed the greatest change of TMP. When evaluate (A) and (C) in Flux $10m^3/m^2{\cdot}day$, TMP of (A) stopped operation being exceeded 120 kpa in 20 minutes. On the other hand, TMP of (C) is increased only 3 kpa in 120 minutes. Through this, membrane filtration process can be operated stably by using the linkage between the pretreatment process and the ceramic membrane filtration process. Turbidity of treated water remained under 0.1 NTU regardless of flux condition and DOC and $UV_{254}$ showed a removal rate of 65-85%, 95% more each at process connected with pretreatment. Physical cleaning was carried out using water and air of 500kpa to show the recovery of pollutants formed on membrane surface by filtration. In (A) process, TMP has increased rapidly and decreased the recovery by physical cleaning as the flux rises. This means that contamination on membrane surface is irreversible fouling difficult to recover by using physical cleaning. Process (B) and (C) are observed high recovery rate of 60% more in high flux and especially recovery rate of process (B) is the highest at 95.8%. This can be judged that the coagulation flocs in the raw water formed cake layer with irreversible fouling and are favorable to physical cleaning. As a result of estimation, observe that ceramic membrane filtration connected with pretreatment improves efficiency of filtration and recovery rate of physical cleaning. And ceramic membrane which is possible to operate in the higher flux than organic membrane can be reduce the area of water purification facilities and secure a stable quantity of water by connecting the ceramic membrane with pretreatment process.

Adaptive Pipeline Architecture for an Asynchronous Embedded Processor (비동기식 임베디드 프로세서를 위한 적응형 파이프라인 구조)

  • Lee, Seung-Sook;Lee, Je-Hoon;Lim, Young-Il;Cho, Kyoung-Rok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.1
    • /
    • pp.51-58
    • /
    • 2007
  • This paper presented an adaptive pipeline architecture for a high-performance and low-power asynchronous processor. The proposed pipeline architecture employed a stage-skipping and a stage-combining scheme. The stage-skipping scheme can skip the operation of a bubble stage that is not used pipeline stage in an instruction execution. In the stage-combining scheme, two consecutive stages can be joined to form one stage if the latter stage is empty. The proposed pipeline architecture could reduce the processing time and power consumption. The proposed architecture supports multi-processing in the EX stage that executes parallel 4 instructions. We designed an asynchronous microprocessor to estimate the efficiency of the proposed pipeline architecture that was synthesized to a gate level design using a $0.35-{\mu}m$ CMOS standard cell library. We evaluated the performance of the target processor using SPEC2000 benchmark programs. The proposed architecture showed about 2.3 times higher speed than the asynchronous counterpart, AMULET3i. As a result, the proposed pipeline schemes and architecture can be used for asynchronous high-speed processor design

Development of Multi-functional Tele-operative Modular Robotic System For Watermelon Cultivation in Greenhouse

  • H. Hwang;Kim, C. S.;Park, D. Y.
    • Journal of Biosystems Engineering
    • /
    • v.28 no.6
    • /
    • pp.517-524
    • /
    • 2003
  • There have been worldwide research and development efforts to automate various processes of bio-production and those efforts will be expanded with priority given to tasks which require high intensive labor or produce high value-added product and tasks under hostile environment. In the field of bio-production capabilities of the versatility and robustness of automated system have been major bottlenecks along with economical efficiency. This paper introduces a new concept of automation based on tole-operation, which can provide solutions to overcome inherent difficulties in automating bio-production processes. Operator(farmer), computer, and automatic machinery share their roles utilizing their maximum merits to accomplish given tasks successfully. Among processes of greenhouse watermelon cultivation tasks such as pruning, watering, pesticide application, and harvest with loading were chosen based on the required labor intensiveness and functional similarities to realize the proposed concept. The developed system was composed of 5 major hardware modules such as wireless remote monitoring and task control module, wireless remote image acquisition and data transmission module, gantry system equipped with 4 d.o.f. Cartesian type robotic manipulator, exchangeable modular type end-effectors, and guided watermelon loading and storage module. The system was operated through the graphic user interface using touch screen monitor and wireless data communication among operator, computer, and machine. The proposed system showed practical and feasible way of automation in the field of volatile bio-production process.

A study on service model for unified data transmission in a subway and railway (차지상간 통합전송시스템의 서비스 모델에 관한 연구)

  • An, Tae-Kil;Kim, Back-Hyun;Jeong, Sang-Guk;Nam, Myung-Woo;Lee, Young-Seock;Oh, Myung-Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.5
    • /
    • pp.1573-1579
    • /
    • 2010
  • In this paper, we studied efficient design of wireless transmission system for unified data transmission in a subway and railway. It is increased that need of broadband multimedia service to make useful environment for users and to support the operation of railway system. High bandwidth is better if we need more services. But, high bandwidth requires more cost at tunnel of subway. And more bandwidth makes received antenna sensitivity bad. So it needs more wireless stations. We deduced best bandwidth for subway wireless transmission system using the cost of installation and efficiency of system. Consequently, we proposed efficient service model for broadband wireless system at a subway. Subway broadband wireless transmission system is testing and extended to province subway. The cost of subway broadband wireless transmission system is saved, because the system can be efficiently designed using proposed service model. Therefore, the effectiveness of it will be expected to be very big.