• Title/Summary/Keyword: High efficiency operation

Search Result 1,911, Processing Time 0.027 seconds

Experimental study on operation of diesel autothermal reformer for SOFC system (SOFC 시스템용 디젤 자열개질기 운전을 위한 기초 연구)

  • Yoon, Sang-Ho;Kang, In-Yong;Bae, Joong-Myeon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2015-2020
    • /
    • 2007
  • Diesel is an excellent candidate fuel for fuel cell applications due to its high hydrogen density and well-established infrastructure. But, it is hard to guarantee desirable performance of diesel reformer because diesel reforming has several problems such as sulfur poisoning of catalyst and carbon deposition. We have been focusing on diesel autothermal reforming(ATR) for substantial period. It is reported that ATR of diesel has several technical advantages such as relatively high efficiency and fuel conversion compared to steam reforming(SR) and partial oxidation(POX). In this paper, we investigate characteristics of diesel reforming under various ratios of reactants(oxygen to carbon ratio, steam to carbon ratio) for improvement of reforming performances(high reforming efficiency, high fuel conversion, low carbon deposition). We also exhibit calculated heat balance of autothermal reformer at each condition to help thermal management of SOFC system.

  • PDF

Feed Optimization Based on Virtual Manufacturing for High-Efficiency Turning (고능률 선삭 가공을 위한 가상 가공 기반의 이송량 최적화)

  • Kang, You-Gu;Cho, Jae-Wan;Kim, Seok-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.9
    • /
    • pp.960-966
    • /
    • 2007
  • High-efficient machining, which means to machine a part in the least amount of time, is the most effective tool to improve productivity. In this study, a new feed optimization method based on virtual manufacturing was proposed to realize the high-efficient machining in turning process through the cutting power regulation. The cutting area was evaluated by using the Boolean intersection operation between the cutting tool and workpiece. And the cutting force and power were predicted from the cutting parameters such as feed, depth of cut, spindle speed, specific cutting force, and so on. Especially, the reliability of the proposed optimization method was validated by comparing the predicted and measured cutting forces. The simulation results showed that the proposed optimization method could effectively enhance the productivity in turning process.

Performance Analysis of SOFC/MGT Hybrid System

  • Kim, Jae-Hwan;Suzuki, Kenjiro
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.703-707
    • /
    • 2001
  • A performance analysis of a SOFC/MGT hybrid system has been carried out for concept design. Thermo-dynamic models for each component being able to describe electrochemical characteristics and heat and mate-rial balance are proposed. Estimated is the power capacity of a SOFC suitable for the hybrid operation with a 5kW class MGT. Effects of current density and operating pressure are also investigated. Electric efficiency showed weak dependence on operating pressure and current density. It is desirable that the SOFC operates at high current density in manufacturing cost's point of view though operating with high current density slightly decreases the electric efficiency find specific power.

  • PDF

Treatment of Polyester Weight Loss Wastewater Using Strains Degrading Ethylene Glycol and Terephthalic Acid (Ethylene Glycol과 Terephthalic Acid 분해균주를 이용한 감량가공폐수처리)

  • 서승교
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.3
    • /
    • pp.43-48
    • /
    • 2001
  • Terephthalic acid and ethylene glycol resulting form the weight-reduction process of polyester make trouble in the operation of activated sludge process. Also, polyester weight loss wastewater shows high pH, high organic strength and wide variation of organic loading. Therefore, this study was conducted in order to improve treatment efficiency by activated sludge process with Pseudomonas sp degrading components of polyester weight loss wastewater. The CO $D_{Mn}$ and BO $S_{5}$ of the waste wastewater were 560~3,000 mg/$\ell$ and 8000~3,000 mg/$\ell$, respectively. pH was 11.8~12.3. COD removal efficiency by activated sludge-coagulation process with Pseudomonas sp was 94.1~95.8% for 35 hr of hydraulic retention time. Total organic carbon removal efficiency was 97.1%. Ethylene glycol and terephthalic acid in the wastewater were completely degraded during 32 hr of hydraulic retention time.e.

  • PDF

A Study on the 120W Half Bridge Resonant DC-DC Converter (120W급 Half Bridge 공진형 DC-DC 컨버터에 관한 연구)

  • Lee Jae-Duk;Lee Dal-Woo;Ahn Tae-Young
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.747-751
    • /
    • 2004
  • In recent years power supplies for telecommunication equipment is required smaller size and higher efficiency, and low noise operation. There exists a series resonant converter in which the switching loss is reduced in order to realize a high efficiency converter. However, if a constant voltage regulation is required. The switching frequency varies widely. In this paper we study the details of resonant DC-DC converter in which the realize a high efficiency converter.

  • PDF

Influence of Side Leakage Loss on the Performance of a Micro Positive Displacement Hydraulic Turbine (마이크로 용적형 수차의 측면누설손실이 성능에 미치는 영향)

  • Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.291-295
    • /
    • 2006
  • Recently, greenhouse effect by $CO_2$ gas emitted by use of fossil fuel causes earth environmental problem. As a countermeasure of the global warming. micro hydropower under 100kW becomes the focus of attention for its clean and renewable energy sources. Newly developed micro positive displacement hydraulic turbine shows high efficiency and good applicability for the micro hydropoewer. The purpose of this study is to clarify the influence of leakage loss and effective head on the performance of the positive displacement hydraulic turbine for the further improvement of the turbine performance. The results show that the turbine. with a smaller side clearance. has much higher efficiency than that with bigger side clearance and it can sustain the high efficiency under the wider range of operation conditions. The turbine torque is proportional to the effective head and independent of the flow rate. The leakage is also dependent on the effective head but nearly independent of the flow rate.

Operation Characteristics of an UASB at High Organic Loading Condition for Thermal Elutriated Acids of Piggery Wastewater Treatment (가축분뇨 고온 세정산발효액 처리를 위한 고부하 조건에서의 UASB 운전특성)

  • Kwon, Koo-Ho;Jung, Yong Jun;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.781-785
    • /
    • 2012
  • This study was carried out to treat the thermal elutriated acids of piggery wastewater using UASB process. The UASB reactor was operated at an organic loading rate (OLR) of $7.4\;kgCOD/m^3-day$ (6.5 ~ 9.0). During the start-up period, the low COD removal efficiency (20%) was caused by shock loading and instability in the reactor. It was mainly due to the high concentration amounts of ammonia nitrogen, which caused inhibitory and toxic effects to toward the anaerobic bacteria. In steady state, the UASB reactor showed a SCOD removal efficiency of 71% and a VS removal efficiency of 39%. The gas production and methane content were 1.3 L/day $(0.21\;m^3\;CH^4/kg$ COD removed) and 77%, respectively.

The Performance of Pollutant Removal Using Nonpoint Treatment Filtration Device and Analysis of the Filter Backwashing Effect (여과형 비점오염 처리장치의 오염물질 제거특성 및 역세척 분석)

  • Lee, Jun-ho;Yang, Seung-ho;Bang, Ki-woong
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.5
    • /
    • pp.523-532
    • /
    • 2015
  • Hydrocyclone is widely used in industry, for its simple design, high capacity, low maintenance and low operational cost. The objective of this study is to develop hydrocyclone coagulation and filtration system. The system is made of hydrocyclone ballasted coagulation with polyaluminium chloride silicate (PACS) and upflow filter to treat micro particles in urban storm runoff. Roadside sediment particles (< $200{\mu}m$) was mixed with tap water to make various turbid suspensions to simulate urban storm runoff. The filter cartridge was filled with polyethylene media system and ran 1hr per everyday and total operation time were 8.19hrs and backwashing everyday after end of operation. The operation condition of flowrate was $8.2{\sim}11.9m^3/day$ (mean $10.1m^3/day$) and surface overflow rate (SOR) based on filter surface area was $45.5{\sim}65.9m^3/m^2/day$ (mean $55.7m^3/m^2/day$). The range of PACS dosage concentration was 14.0~31.5 mg/L. As the results of operation, the range of removal efficiency of turbidity, SS were 81.0~95.8% (mean 89.5%) 81.8~99.0% (mean 91.4%), respectively. An increase of filtration basin retention time brought on increased of removal efficiency of turbidity and SS, and increase of SOR brought on decreased of removal efficiency. During the first flush in urban area, storm runoff have an high concentration of SS (200~600 mg/L) and the filtration bed becomes clogged and decreased of removal efficiency. Backwashing begins when the drainage pipe valve at the filtration tank bottom is completely open (backwashing stage 1). Backwashing stage 2 was using air bubbles and water jet washing the media for 5 mins and open the drainage valve. After backwashing stage 1, 2, 61.83~64.04%, 18.53~27.51% of SS loading was discharged from filtration tank, respectively. Discharged SS loading from effluent was 7.12~14.79% and the range of residual SS loading in fliter was 2.26~5.00%. The backwashing effects for turbidity, SS were 89.5%, 91.4%, respectively. The hydrocyclone coagulation and filtration with backwashing system, which came out to solve the problems of the costly exchange filter media, and low efficiency of removing micro particles of filter type nonpoint treatment devices, is considered as an alternative system.

Fault Tolerance Operation and Characteristics Analysis of Asymmetric Six-phase Permanent Magnet Synchronous Motor According to Switch Open (비대칭 6상 영구자석 동기 전동기의 스위치 개방에 따른 특성 분석 및 고장허용운전)

  • Jun, So-Young;Hwang, Seon-Hwan;Park, Jong-Won
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_2
    • /
    • pp.1003-1008
    • /
    • 2022
  • This paper proposes a method related to fault tolerance operation and characteristic analysis of asymmetric 6-phase permanent magnet synchronous motor. In general, motor drive systems with multi-phase structures can be continuously operated despite a reduction of power and speed by using a phase changeover or control techniques according to the failures. As a result, it is widely used in industrial fields such as aviation and defense, which require high efficiency and high reliability. In this paper, the second order ripple of the electrical fundamental freuqnecy occurs in the dq-axis currents of the synchronous coordinate system through mathematical analysis according to the switch open of the dual 3-phase inverter. Therefore, the fault tolerant operation method is presented by applying the fault detection method with a constant cycle for continuous operations. The effectiveness of the proposed fault tolerance operation method is verified through the several experiments.

8kW LLC Isolated Converter Design for ESS Battery Charge/Discharge System (ESS 배터리 충방전 시스템을 위한 8kW급 LLC 절연형 컨버터 설계)

  • Kim, Jinwoo;Baek, Seunghoon;Cho, Younghoon;Koo, Tae-Geun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.3
    • /
    • pp.161-167
    • /
    • 2018
  • In battery-operated systems, an isolated converter is used to interface the utility grid with the system to increase stability when charging and discharging batteries. Systems such as vehicle-to-grids (V2Gs), on-board chargers, and energy storage systems (ESSs) have recently become popular, and the roles of isolated converters have become important considerations in fabricating such devices. A fixed-frequency LLC converter, which is a type of isolated converter, presents the advantages of high efficiency and high power density by performing zero-voltage switching (ZVS) over wide frequency ranges. However, the magnetizing inductance of the LLC converter should be designed to enable ZVS in all switching devices. Therefore, in this study, the operating characteristics of the LLC circuit are analyzed, and an optimal design method for ZVS operation is established. Moreover, an 8 kW LLC high-efficiency and high-power-density resonant converter is designed and tested for ESS application. The LLC converter achieves 98% efficiency at rated power.