• Title/Summary/Keyword: High efficiency operation

Search Result 1,907, Processing Time 0.026 seconds

High Efficiency Operation of a Switched Reluctance Generator over a Wide Speed Range

  • Yu, Siyang;Zhang, Fengge;Lee, Dong-Hee;Ahn, Jin-Woo
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.123-130
    • /
    • 2015
  • This paper investigates the high efficiency operation of a switched reluctance generator over a wide speed range. The system efficiency is improved by optimizing the current shape. A modified angle position control (MAPC) method that can be used to optimize the current shape over a wide speed range is proposed. Simulation and experimental results are presented to validate the effectiveness of the proposed control scheme.

High-Efficiency DC-DC Converter using the Multi-Resonant-Circuit (다중공진회로를 이용한 고효율 DC-DC 컨버터)

  • Jeong, Gang-Youl
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.218-228
    • /
    • 2021
  • This paper presents the high-efficiency DC-DC converter using the multi-resonant-circuit. The proposed converter has the power topology of half-bridge and utilizes the multi-resonant-circuit that is composed of 2 inductors (LL) and 1 capacitor (C) to achieve high-efficiency. The multi-resonant-circuit forms each resonant circuit of series circuit type with each resonant frequency, according to the operation modes. This paper first describes the operation pirinciples of proposed converter by the operation modes and steady-state fundamental approximation modelling. Then it shows a design example of the proposed converter based on the principles. And it is validated that the proposed converter has the operation characteristics of high-efficiency DC-DC power conversion through the experimental results of prototype converter implemented by the designed circuit parameters.

High-efficiency Operation of Switched Reluctance Generator based on Current Waveform Control

  • Li, Zhenguo;Yu, Siyang;Ahn, Jin-Woo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.1
    • /
    • pp.120-126
    • /
    • 2013
  • The main aim of this paper is to expound high-efficiency operation of Switched Reluctance Generator (SRG) based on the current waveform. For this purpose, theoretical analysis of the copper loss and iron loss of the system is done first. Then, necessary simulation is done to find the variation trend of the copper loss and iron loss with the variation of the current waveform at the same output power. Finally, the best current waveform which can make the system operate with high efficiency is obtained by considering the influence of these two kinds of loss. In order to verity the simulation results, the experimental platform of DC motor-SRG is built and the modified angle position control (APC) method which can specify the current shape optionally is presented. By comparing the system efficiency at the three kinds of typical current waveform, the correctness and feasibility of the theory is verified. The proposed method is simple, reliable, and easy to achieve.

High Efficiency Active Clamp Forward Converter with Synchronous Switch Controlled ZVS Operation (동기 스위치 제어를 통한 영전압 동작 고효율 능동 클램프 포워드 컨버터)

  • Lee, Sung-Sae;Cho, Seong-Wook;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.266-268
    • /
    • 2005
  • A new synchronous switch controlled transient current build-up zero voltage switching (TCB-ZVS) forward converter is proposed. The proposed converter is suitable for the low-voltage and high-current applications. The features of the proposed converter are low conduction loss of magnetizing current, no additional circuit for the ZVS operation, high efficiency, high power density and low EMI noise throughout all load conditions.

  • PDF

Wireless Energy Transmission High-Efficiency DC-AC Converter Using High-Gain High-Efficiency Two-Stage Class-E Power Amplifier

  • Choi, Jae-Won;Seo, Chul-Hun
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.3
    • /
    • pp.161-165
    • /
    • 2011
  • In this paper, a high-efficiency DC-AC converter is used for wireless energy transmission. The DC-AC convertter is implemented by combining the oscillator and power amplifier. Given that the conversion efficiency of a DC-AC converter is strongly affected by the efficiency of the power amplifier, a high-efficiency power amplifier is implemented using a class-E amplifier structure. Also, because of the low output power of the oscillator connected to the input stage of the power amplifier, a high-gain two-stage power amplifier using a drive amplifier is used to realize a high-output power DC-AC converter. The high-efficiency DC-AC converter is realized by connecting the oscillator to the input stage of the high-gain high-efficiency two-stage class-E power amplifier. The output power and the conversion efficiency of the DC-AC converter are 40.83 dBm and 87.32 %, respectively, at an operation frequency of 13.56 MHz.

High Efficiency Design Procedure of a Second Stage Phase Shifted Full Bridge Converter for Battery Charge Applications Based on Wide Output Voltage and Load Ranges

  • Cetin, Sevilay
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.975-984
    • /
    • 2018
  • This work presents a high efficiency phase shifted full bridge (PSFB) DC-DC converter for use in the second stage of a battery charger for neighborhood electrical vehicle (EV) applications. In the design of the converter, Lithium-ion battery cells are preferred due to their high voltage and current rates, which provide a high power density. This requires wide range output voltage regulation for PSFB converter operation. In addition, the battery charger works with a light load when the battery charge voltage reaches its maximum value. The soft switching of the PSFB converter depends on the dead time optimization and load condition. As a result, the converter has to work with soft switching at a wide range output voltage and under light conditions to reach high efficiency. The operation principles of the PSFB converter for the continuous current mode (CCM) and the discontinuous current mode (DCM) are defined. The performance of the PSFB converter is analyzed in detail based on wide range output voltage and load conditions in terms of high efficiency. In order to validate performance analysis, a prototype is built with 42-54 V / 15 A output values at a 200 kHz switching frequency. The measured maximum efficiency values are obtained as 94.4% and 76.6% at full and at 2% load conditions, respectively.

High Efficiency Active Clamp Forward Converter with Synchronous Switch Controlled ZVS Operation

  • Lee Sung-Sae;Choi Seong-Wook;Moon Gun-Woo
    • Journal of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.131-138
    • /
    • 2006
  • An active clamp ZVS PWM forward converter using a secondary synchronous switch control is proposed in this paper. The proposed converter is suitable for low-voltage and high-current applications. The structure of the proposed converter is the same as a conventional active clamp forward converter. However, since it controls the secondary synchronous switch to build up the primary current during a very short period of time, the ZVS operation is easily achieved without any additional conduction losses of magnetizing current in the transformer and clamp circuit. Furthermore, there are no additional circuits required for the ZVS operation of power switches. Therefore, the proposed converter can achieve high efficiency with low EMI noise, resulting from soft switching without any additional conduction losses, and shows high power dens~ty, a result of high efficiency, and requires no additional components. The operational principle and design example are presented. Experimental results demonstrate that the proposed converter can achieve an excellent ZVS performance throughout all load conditions and demonstrates significant improvement in efficiency for the 100W (5V, 20A) prototype converter.

Input Power Estimation Method of a Three-phase Inverter for High Efficiency Operation of an AC Motor (교류 전동기의 고효율 운전을 위한 3상 인버터의 입력전력 추정 기법)

  • Kim, Do-Hyun;Kim, Sang-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.6
    • /
    • pp.445-451
    • /
    • 2019
  • An input power estimation method of a three-phase inverter for the high-efficiency operation of AC motors is proposed. Measuring devices, such as DC link voltage and input current sensors, are required to obtain the input power of the inverter. In the proposed method, the input power of the inverter can be estimated without the input current sensor by using the phase current information of the AC motor and the switching pattern of the inverter. The proposed method is more robust to parameter error than conventional method. The validity of the input power estimation method is verified through experiments conducted on a 1 kW permanent-magnet synchronous motor drive system.

Design of a 49kW high efficiency bidirectional DC-DC converter for charge and discharge of high voltage battery in HEV (하이브리드 자동차 고전압 배터리 충, 방전을 위한 49kW급 고효율 양방향 DC/DC 컨버터 설계)

  • Yang, Jin-Young;Yoon, Chang-Woo;Park, Sung-Sik;Choi, Se-Wan;Park, Rae-Kwan;Chang, Seo-Geon
    • Proceedings of the KIPE Conference
    • /
    • 2007.11a
    • /
    • pp.21-23
    • /
    • 2007
  • In this paper a high efficiency bi-directional DC-DC converter for hybrid vehicles is proposed. The proposed converter a three-phase half-bridge interleaved ZVS converter, is designed to have high efficiency in the main operation range. The component ratings are calculated, the actual devices are selected, and the efficiency analysis has been performed to determine optimal ZVS range. The input and output current ripples are significantly reduced due to the interleaved operation. The dual loop control for the interleaved three-phase converter is also presented. To confirm the proposed convert ter, The simulation and experimental results are presented.

  • PDF

DC-DC Converter of High Efficiency by using Loss-less Snubber Capacitor (무손실 스너버 커패시터에 의한 고효율의 DC-DC 컨버터)

  • Kwak, Dong-Kurl;Lee, Bong-Seob;Kim, Choon-Sam;Shim, Jae-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1049-1050
    • /
    • 2006
  • This paper is proposed to a novel DC-DC converter operated high efficiency for loss-less snubber capacitor. The general converters of high efficiency is made that the power loss of the used switching devices is minimized. To achieve the soft switching operation of the used control switches, the proposed converter is constructed by using a loss-less snubber capacitor. The proposed converter achieves the soft-switching for all switching devices without increasing their voltage and current stresses. The result is that the switching loss is very low and the efficiency of converter is high. The soft switching operation of the proposed converter is verified by digital simulation and experimental results.

  • PDF