• Title/Summary/Keyword: High efficiency apparatus

Search Result 119, Processing Time 0.021 seconds

Effects of Six Antibiotics on the Activity of the Photosynthetic Apparatus and Ammonium Uptake of Thallus of Porphyra yezoensis

  • Oh, Min-Hyuk;Kang, Yun-Hee;Lee, Choon-Hwan;Chung, Ik-Kyo
    • ALGAE
    • /
    • v.20 no.2
    • /
    • pp.121-125
    • /
    • 2005
  • The modern integrated fish-seaweed mariculture has been tested to reduce the environmental impacts of an intensive fed culture. To obtain the best seaweed bioremediation performance, the effects of therapeutants used for fish disease control on the selected seaweed species should be considered. As a selected seaweed, Porphyra yezoensis was tested with six commercial antibiotics including erythromycin thiocyanate_A, erythromycin thiocyanate_B, oxytetracycline, doxycycline, pefloxacin, and amoxicillin trihydrate under the batch incubation at a photon flux density of 10 $\mu$mol ${\cdot}m^{-2}\;{\cdot}\;s^{-1}$ at 15$^{\circ}C$. Among the tested commercial antibiotics, erythromycin thiocyanate_A, erythromycin thiocyanate_B, oxytetracycline, and doxycycline showed decreases in Fv/Fm, the photochemical efficiency of photosystem II, with a dose-dependant and time-dependant manner. From the quenching analysis of chlorophyll fluorescence, three differential patterns were observed in the antibiotics-treated Porphyra: (1) high nonphotochemical quenching (NPQ) and low photochemical quenching (qP) in the cases of Erythromycin thiocyanate_B and amoxicillin trihydrate, (2) high NPQ and high qP in the case of pefloxacin and (3) low NPQ and low qP in the case of oxytetracycline. These results indicated that antibiotics affected in various ways on the photosynthetic apparatus, reflecting differential lesion sites of antibiotics. In addition, the rates of ammonium uptake also decreased with a decrease of Fv/Fm in P. yezoensis thalli treated with erythromycin thiocyanate_B and oxytetracycline. Therefore, the four antibiotics mentioned could affect the bioremediation capacity of the selected seaweed species in the integrated fish-seaweed mariculture system due to the decrease of photosynthetic activity and the simultaneous decrease of ammonium uptake.

The High Efficiency of Amorphous-Si Solar Cells Prepared by Photo-CVD System (광(光) CVD 법(法)에 의한 a-Si 태양전지(太陽電池)의 고효율화에 관한 연구(硏究))

  • Kim, Tae-Seoung
    • Solar Energy
    • /
    • v.5 no.2
    • /
    • pp.46-53
    • /
    • 1985
  • Hydrogenated amorphous silicon solar cells which are fabricated by photo-chemical vapor deposition (photo-CVD) system has been investigated. In the photo-CVD system which consists of three separate reaction chambers, low-pressure mercury lamp has been used as a light source. The main reactant ($Si_2H_6/He$) gases which are premixed with a small amount of mercury vapor in a mercury-vaporizer kept at $50^{\circ}C$ have been used. Using $C_2H_2$ and $SiH_2(CH_3)_2$ as the carbon source, p-type wide band gap a-SiC:H films have been obtained. The result has been found that the undoped layers of the pin/substrate solar cells are influenced by the residual impurities, such as phosphorus and boron during the deposition process. By minimizing the effect of the impurities in the i-layer and optimizing conditions at the p-layer and p/i interface, the energy conversion efficiency of 9.61 % under AM-1 ($100mW/Cm^2$) has been achieved for pin/substrate solar cells illuminated through their p-layers, using the three separate reaction chamber apparatus. It is expected that a-SiC:H solar cells with the energy conversion efficiency over 10% have been fabricated by Photo-CVD method.

  • PDF

A Study on the Fabrication of Surface Heating Panel Using SiC Ceramics (SiC계 세라믹을 이용한 면상발열 판넬 개발에 관한 연구)

  • Cho, Hyun-Seob
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.6
    • /
    • pp.604-608
    • /
    • 2016
  • In recent years, research and development has been carried out in order to increase the economical efficiency and stability in terms of efficient use of energy for the heating apparatus. Especially, technology development for high performance and new functional materials is actively being carried out. This paper focuses on the development of exothermic products with excellent energy transfer characteristics. The heating element used for bedding or mattress uses a heating wire. Since the heating wire is thin, the distribution of heat is concentrated only around the heating wire,. In addition, electromagnetic induction is harmful to the human body and energy consumption is high. Therefore, it is aimed to develop a planar heating panel using SiC ceramics which can radiate far-infrared rays and anions to be harmless to the human body, but also has excellent heat conduction to enhance energy efficiency.

Hydrate Production Performance Analysis with Multi-Well, Plate-Type Apparatus Using Depressurization and Thermal Methods (다중공 평판형 장비를 이용한 감압법과 열자극법에 의한 하이드레이트 가스 생산성 분석)

  • Lee, Youngsoo;Wang, Jihoon;Park, Jungkyoon;Sung, Wonmo
    • Korean Chemical Engineering Research
    • /
    • v.47 no.1
    • /
    • pp.133-140
    • /
    • 2009
  • This paper presents the experimental study to analyze the pressure and production behavior using depressurization and thermal methods in order to evaluate the hydrate productivity in the 2-D multi-well, plate-type apparatus which has 80 md permeability and 30% hydrate saturation. Injecting methane gas through multi-well allowed to set up the highly saturated hydrate system and combining two different sorts of sands made possible to build up the low permeability system. In this system, both depressurization and electric stimulation methods were applied. When operating pressure was low, according to the depressurization experiments results, the gas recovery was high, however strong pulses which appeared at initial stage of production would damage the operation system. Moreover, cases that hydrate reformed have occurred by endothermic reaction. We have conducted experiments four and six times for the depressurization magnitudes of 140 psi and 320 psi, respectively, to analyze production behavior for the method more in detail. For the cases that the depressurization magnitude was set as 140 psi, the unstable period appears in the results, but stabilized soon. In the experiment results for 320 psi the discontinuous and intermittent behavior has been observed. Thermal stimulation experiments was conducted with depressurizing 80 psi which is the case that shows stable behavior and low recovery. In the results, the gas recovery was high and the energy efficiency was low for long stimulating time. The energy efficiency and gas recovery increased for the soaking time of 1 minute after 2 minute-preheating. In the cases of which the soaking time exceeds 1 minute, energy loss by long soaking time caused low gas recovery and poor energy efficiency.

Analysis of Anti-adipogenic Constituents of Cordyceps militaris Using High Performance Liquid Chromatography-Diode Array Detection in Different Samples: Comparison with Anti-adipogenic Activity

  • Liu, Qing;Hong, In-Pyo;Han, Sang-Bae;Hwang, Bang-Yeon;Lee, Mi-Kyeong
    • Natural Product Sciences
    • /
    • v.18 no.3
    • /
    • pp.171-176
    • /
    • 2012
  • We previously isolated cordycepin, guanosine and tryptophan from Cordyceps militaris as antiadipogenic constituents. For the quality control of C. militaris for anti-adipogenic activity, simultaneous analytical method using high-performance liquid chromatography (HPLC)-diode array detection (DAD) was developed and validated. Quantitation of these compounds in various Cordyceps samples from different sources and various extraction methods were conducted using developed method. Our study shows that natural Cordyceps and host insect possess higher content than cultured ones and fruiting bodies, respectively. The content of cordycepin showed great difference in different C. militaris samples whereas trytophan content was similar in tested samples. Addition of water to extraction solvent greatly increased the yield of guanosine and tryptophan. High temperature and longer extraction time increased yield of guanosine, whereas the content of trytophan was decreased in high temperature during extraction with water. Extraction using ultrasonic apparatus slightly increased extraction efficiency. Cordycepin, however, has little variation in different extraction method tested. Strong anti-adipogenic activity was observed in the samples that contain all the three constituents. Taken together, quantitation of these compounds using developed analytical method might provide basic requirement for the anti-adipogenic activity of C. militaris.

Effects of Operating Variables on Separation Rate and Separation Efficiency in Ash Separator for Solid Fuel Chemical Looping Combustor (고체연료 매체순환연소기를 위한 회재분리기에서 분리속도 및 분리효율에 미치는 조업변수들의 영향)

  • RYU, HOJUNG;LEE, DONGHO;YOON, JOOYOUNG;JANG, MYOUNGSOO;BAE, DALHEE;PARK, JAEHYEON;BAEK, JEOMIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.2
    • /
    • pp.211-219
    • /
    • 2016
  • To develop an ash separator for the solid fuel chemical looping combustion system, effects of operating variables such as solid injection nozzle velocity, diameter of solid injection nozzle, gap between solid injection line and vent line, vent line inside diameter, and solid intake height on solid separation rate and solid separation efficiency were measured and discussed using heavy and coarse particle and light and fine particles mixture as bed material in an acrylic fluidized bed apparatus. The solid separation rate increased as the solid injection nozzle velocity and the diameter of solid injection nozzle increased. However, the solid separation rate decreased as the gap between solid injection line and vent line, the vent line inside diameter, and the solid intake height increased. The solid separation efficiency was in inverse proportion to the solid separation rate. In this study, we could get high solid separation rate up to 2.39 kg/hr with 91.6% of solid separation efficiency.

Evaluation of Initial Collision-Attachment Coefficient and Flotation Characteristics Using Population Balance in Microbubble Flotation Process for Microplastics Separation (미세플라스틱 분리를 위한 미세기포 부상공정에서 개체군수지를 이용한 초기 부착 계수 및 부상특성의 평가)

  • Jung, Heung Joe;Lee, Jae Wook;Kwak, Dong Heui
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.1
    • /
    • pp.10-19
    • /
    • 2021
  • In the flotation process to remove microplastic (MP) particles, the attachment and separation efficiency is determined by the basic physicochemical characteristics of MP particles as well as bubbles. To evaluate the flotation characteristics of MP particles, we carried out a series of simulations using the population balance (PB) model. The initial attachment coefficient (αo) of MP particles was in the range of 0.2-0.275, and it was slightly lower than that of typical particles, such as clay, debris and algae particles, which exist in water bodies, αo, 0.3-0.4. The relative bubble number (RBN) attached to the surface of the typical number of bubbles was 0.30 and 0.32 for MP 30 ㎛ and MP 58 ㎛, respectively. In comparison, the RBN of larger MP particles (138 ㎛) was as high as 0.53. Furthermore, smaller microbubbles were required to separate properly or additional treatment needed to be applied to enhance collision and attachment efficiency since the flotation of MP particles was found to be difficult to treat as high-rate. As a result of comparing the removal rate (experimental value) of MP particles obtained from the batch-type flotation apparatus and the flotation removal rate (predicted value) of MP obtained through the PB model, the final particles by the particle size of MP overall except for the initial separation time area. With respect to the removal efficiency, the observed and predicted values were similar, and it was confirmed that the floating separation characteristics and evaluation of the MP particles through the PB model could be possible.

A Study on the Characteristics of Refrigerating System according to the Condensation and Evaporation Load (응축 및 증발 부하에 따른 냉동시스템 특성에 관한 연구)

  • Choi, Seung-Il;Ji, Myoung-Kuk;Lee, Dae-Chul;Jeong, Hyo-Min;Chung, Han-Shik
    • Journal of Power System Engineering
    • /
    • v.17 no.3
    • /
    • pp.44-49
    • /
    • 2013
  • The refrigerating system are high efficiency and comfortable due to the automation of the system as well as enhance energy saving are contributing to driving system. Previous study the rotational frequency of the compressor was confined to the fixed condition have changed load of evaporator and condenser related about the refrigerator performance characteristic according to the evaporation load and condensation load change tries to be analyze through the experiment. The useful data for the economic driving of the freezing apparatus tries to be drawn. Consequently, it confirmed that refrigerant in the compressor overheated and as the evaporation load increased the specific volume was increased and the coolant circulation rate decreased. In confirmed that condensation load increased the compression ratio and discharge gas temperature increased. It reduced the low-temperature efficiency and condensation calorie and the quality factor was decreased.

Experimental Study on Single Channel DPF Device Applying the Method of Internal 2-Way Rotary Valve (회전형 밸브를 적용한 단일채널내 2-Way 방식의 DPF장치에 대한 실험적 연구)

  • Ham, Seong-Hun;Youm, Kwang-Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.6
    • /
    • pp.110-115
    • /
    • 2015
  • In this paper it is proposed to solve the problem of particulate matter reducing apparatus of the current DPF. One exhaust gas passage 2-way controlled to purify the exhaust gas generated during combustion efficiently. Through the control of the rotary valve within a single device, it is possible to prevent the exhaust pressure increases due to particulate matter accumulate inside the developing DPF. Develop DPF device capable of inducing a high efficiency of the output in order to improve the problem of reducing the engine output and fuel efficiency.

DNA Dynamics under Turbulent Flow

  • Choi, Hyoung-Jin
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.206-206
    • /
    • 2006
  • Polymer induced turbulent drag reduction achieved by adding minute amounts of high molecular weight DNAs in aqueous solution was investigated using a rotating disk apparatus. The DNAs in this study include ${\lambda}-DNA$ and calf-thymus (CT) DNA. By putting emphasis on effect of CT-DNA concentration, its DR characteristics were compared with that of ${\lambda}-DNA$ possessing monodisperse molecular weight characteristics based on both DR efficiency and a mechanical degradation under turbulence. The DNA chains having much higher molecular size than that of ${\lambda}-DNA$ are observed to be more susceptible to mechanical degradation in a turbulent flow. This result was verified via electrophoresis. Furthermore, the coil to globule phase transition of DNA was also investigated under a turbulent flow.

  • PDF