• Title/Summary/Keyword: High dielectric factor

Search Result 224, Processing Time 0.025 seconds

Mn-Modified PMN-PZT [Pb(Mg1/3Nb2/3)O3-Pb(Zr,Ti)O3] Single Crystals for High Power Piezoelectric Transducers

  • Oh, Hyun-Taek;Lee, Jong-Yeb;Lee, Ho-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.2
    • /
    • pp.150-157
    • /
    • 2017
  • Three types of piezoelectric single crystals [PMN-PT (Generation I $[Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3]$), PMN-PZT (Generation II $[Pb(Mg_{1/3}Nb_{2/3})O_3-Pb(Zr,Ti)O_3]$), PMN-PZT-Mn (Generation III)] were grown by the solid-state single crystal growth (SSCG) method, and their dielectric and piezoelectric properties were measured and compared. Compared to (001) PMN-PT and PMN-PZT single crystals, the (001) PMN-PZT-Mn single crystals exhibited a higher transition temperature between the rhombohedral and tetragonal phases ($T_{RT}=144^{\circ}C$), as well as a higher coercive electric field ($E_C=6.3kV/cm$) and internal bias field ($E_I=1.6kV/cm$). The (011) PMN-PZT-Mn single crystals showed the highest coercive electric field ($E_C=7.0kV/cm$), and the highest stability of $E_C$ and $E_I$ during 60 cycles of polarization measurement. These results demonstrate that both Mn doping (for higher electromechanical quality factor ($Q_m$)) and a (011) crystallographic orientation (for higher coercive electric field and stability) are necessary for high power transducer applications of these piezoelectric single crystals. Specifically, the (011) PMN-PZT-Mn single crystal (Gen. III) had the highest potential for application in the fields of SONAR transducers, high intensity focused ultrasound (HIFU), ultrasonic motors, and others.

Effect of MnO2 on piezoelectric properties of PSN-PZT ceramics for piezoelectric actuator applications (압전 액츄에이터용 PSN-PZT 세라믹스의 압전 특성에 미치는 MnO2 첨가 효과)

  • Choi, J.W.;Song, K.H.;Kim, H.J.;Yoon, S.J.;Yoo, K.S.
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.120-125
    • /
    • 2007
  • The effect of $MnO_{2}$ as a sintering additive on the microstructures and the piezoelectric properties, especially mechanical quality factor, of 0.05 Pb$(Sb_{0.5}Nb_{0.5})O_{3}$-0.95 Pb$(Zr_{0.52}Ti_{0.48})O_{3}$ (PSN-PZT) piezoelectric ceramics was investigated. The samples were sintered at $1250^{\circ}C$ for 2 h. The crystal structure and surface morphology of the sample were examined using XRD and FE-SEM, respectively. A study on the influence of $MnO_{2}$ additives on the dielectric and piezoelectric properties showed that the $MnO_{2}$-added PSN-PZT system exhibited a high mechanical quality factor and well-situated piezoelectric properties. The optimized results of $d_{33}$ (319 pC/N), $k_{p}$ (55 %), and $Q_{m}$ (751.24) were obtained at 0.2 wt% $MnO_{2}$ added PSN-PZT piezoelectrics.

Rapid sintering of PZT piezoelectric ceramics by using microwave hybrid energy (마이크로파 에너지를 이용한 PZT 압전세라믹스의 급속소결)

  • 홍성원;채병준;홍정석;안주삼;최승철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.2
    • /
    • pp.135-141
    • /
    • 1995
  • Abstract The sintering behavior and the electrical properties of sintered PZT ceramics using 2.45 GHz microwave energy were investigated. The ceramics were sintered between $1050 ~ 1130^{\circ}C$ for 5 min. Sintered body with high density and good electrical properties were achieved as the sintering temperature increases. Above $1090^{\circ}C$, however, the bulk density was decreased due to the volatilization of PbO component, and also electrical properties were decreased. The relative dielectric constant, mechanical Quality factor, electro- mechanical coupling factor of microwave sintered body at $1090^{\circ}C$ without PbO atmosphere were 1900, 80, 0.53 respectively, which were comparable to conventional sintering values. The sintering process completed within 20 min using microwave hybrid energy. The processing time and the amount of energy con-sumption could be reduced by microwave hybrid energy assisted rapid sintering.

  • PDF

The Electrical Properties of Bi2O3 Doped BaTi4O9 Ceramic Thick Film Monopole Antenna (Bi2O3가 첨가된 BaTi4O9 세라믹 후막 모노폴 안테나의 전기적 특성)

  • Jung Chun-Suk;Ahn Sang-Chul;Ahn Sung-Hun;Heo Dae-Young;Park Eun-Chul;Lee Jae-Shin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.9
    • /
    • pp.826-834
    • /
    • 2004
  • In this paper, we fabricated thick film monopole antennas using Bi$_2$O$_3$-doped BaTi$_4$$O_{9}$ ceramics for small size and broadband intenna. In the result, the high permittivity was fixed and the quality factor was also significantly decreased by the formation of secondary phase of Bi$_4$Ti$_3$O$_{12}$ repleced by addtion Bi. The antenna property influenced by the quality value more than the permittivity. The bandwidth of antenna was increased to 33 %. On the other hand, the gain was reduced to -4.3 dBi. Also radiation patterns were showed low dBi value by increasing of dielectric loss. Specially, Measured x-y plane radiation patterns was distorted as the dispersion of wavelength and high permittivity difference. But the result is showed execellent bandwidth because of low quality value in all formation range.nge.

Fabrication of Ceramic 3D Integration Technology for Ink-jet Printing (Ink-jet Printing을 이용한 3D-Integration 구현)

  • Hwang, Myung-Sung;Kim, Ji-Hoon;Kim, Hyo-Tae;Yoon, Young-Joon;Kim, Jong-Hee;Moon, Joo-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.332-332
    • /
    • 2010
  • We have successfully demonstrated the inkjet printing method to create $Al_2O_3$ films withouWe have successfully demonstrated the inkjet printing method to create $Al_2O_3$ films without a high temperature sintering process. In order to remove the coffee ring effect in the ink drop, we have introduced a co-solvent system in order to create Marangoni flow in the ink drop, which leads to the dense packing of ceramic powders on the substrate during inkjet process. The packing density of the Inkjet-printed $Al_2O_3$ films is around 60% (max. 70%) which is very high compared to the value obtained from the same material films by other conventional methods such as film casting, dip coating process, etc. The voids inside the films (which are around 40% of the entire film volume) are filled with the polymer resin (Cyanate ester) by the infiltration process. This resin infiltration is also implemented by the inkjet printing process right after the Ah03 film ink-jetting process. The microstructures of the printed $Al_2O_3$ films are investigated by Scanning Electron Microscope (SEM) to understand the degree of packing density in the printed films. The inkjet-printed $Al_2O_3$ films have been characterized to investigate its thickness and roughness. Quality factor of the printed $Al_2O_3$ film is also measured to be over 300 at 1MHz.

  • PDF

Investigation of TaNx diffusion barrier properties using Plasma-Enhanced ALD for copper interconnection

  • Han, Dong-Seok;Mun, Dae-Yong;Gwon, Tae-Seok;Kim, Ung-Seon;Hwang, Chang-Muk;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.178-178
    • /
    • 2010
  • With the scaling down of ULSI(Ultra Large Scale Integration) circuit of CMOS(Complementary Metal Oxide Semiconductor)based electronic devices, the electronic devices become more faster and smaller size that are promising field of semiconductor market. However, very narrow line width has some disadvantages. For example, because of narrow line width, deposition of conformal and thin barrier is difficult. Besides, proportion of barrier width is large, thus resistance is high. Conventional PVD(Physical Vapor Deposition) thin films are not able to gain a good quality and conformal layer. Hence, in order to get over these side effects, deposition of thin layer used of ALD(Atomic Layer Deposition) is important factor. Furthermore, it is essential that copper atomic diffusion into dielectric layer such as silicon oxide and hafnium oxide. If copper line is not surrounded by diffusion barrier, it cause the leakage current and devices degradation. There are some possible methods for improving the these secondary effects. In this study, TaNx, is used of Tertiarybutylimido tris (ethylamethlamino) tantalum (TBITEMAT), was deposited on the 24nm sized trench silicon oxide/silicon bi-layer substrate with good step coverage and high quality film using plasma enhanced atomic layer deposition (PEALD). And then copper was deposited on TaNx barrier using same deposition method. The thickness of TaNx was 4~5 nm. TaNx film was deposited the condition of under $300^{\circ}C$ and copper deposition temperature was under $120^{\circ}C$, and feeding time of TaNx and copper were 5 seconds and 5 seconds, relatively. Purge time of TaNx and copper films were 10 seconds and 6 seconds, relatively. XRD, TEM, AFM, I-V measurement(for testing leakage current and stability) were used to analyze this work. With this work, thin barrier layer(4~5nm) with deposited PEALD has good step coverage and good thermal stability. So the barrier properties of PEALD TaNx film are desirable for copper interconnection.

  • PDF

A Study on the PZT Application for Spacecraft Components (압전진동자의 우주부품 활용에 관한 연구)

  • Lee, Sang-Hoon;Hwang, Kwon-Tae;Cho, Hyokjin;Seo, Hee-Jun;Moon, Guee-Won
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.32-39
    • /
    • 2013
  • All spacecraft components shall be checked for compatibility with vacuum using CVCM and TML in advance. CVCM and TML of the PZT-5 piezoelectric vibrator has to be less than 0.1% and 1.0% respectively. Also, it has less than $500ng/cm^2/hr$ of TQCM for vacuum bake-out test using high temperature and high vacuum. Thus, the piezoelectric vibrator may be employed in the vacuum environments. Finally, it can be confirmed that the characteristics change of the piezoelectric vibrator is less than 1% under vacuum environments. Also, the temperature dependency of the characteristics in the PZT-5 piezoelectric vibrator with the lateral mode was investigated in the range of $-100^{\circ}C$ to $90^{\circ}C$ using the thermal vacuum chamber to utilize the vibrator to the aerospace industries. As the results, at room temperature, the resonant and anti-resonant frequencies had the minimum value, whereas, the dielectric constant increased linearly from about 2500 to 7500 in the given temperature range. The mechanical loss decreased linearly from 0.08 to 0.03.

Deposition and Electrical Properties of Al2O3와 HfO2 Films Deposited by a New Technique of Proximity-Scan ALD (PS-ALD) (Proximity-Scan ALD (PS-ALD) 에 의한 Al2O3와 HfO2 박막증착 기술 및 박막의 전기적 특성)

  • Kwon, Yong-Soo;Lee, Mi-Young;Oh, Jae-Eung
    • Korean Journal of Materials Research
    • /
    • v.18 no.3
    • /
    • pp.148-152
    • /
    • 2008
  • A new cost-effective atomic layer deposition (ALD) technique, known as Proximity-Scan ALD (PS-ALD) was developed and its benefits were demonstrated by depositing $Al_2O_3$ and $HfO_2$ thin films using TMA and TEMAHf, respectively, as precursors. The system is consisted of two separate injectors for precursors and reactants that are placed near a heated substrate at a proximity of less than 1 cm. The bell-shaped injector chamber separated but close to the substrate forms a local chamber, maintaining higher pressure compared to the rest of chamber. Therefore, a system configuration with a rotating substrate gives the typical sequential deposition process of ALD under a continuous source flow without the need for gas switching. As the pressure required for the deposition is achieved in a small local volume, the need for an expensive metal organic (MO) source is reduced by a factor of approximately 100 concerning the volume ratio of local to total chambers. Under an optimized deposition condition, the deposition rates of $Al_2O_3$ and $HfO_2$ were $1.3\;{\AA}/cycle$ and $0.75\;{\AA}/cycle$, respectively, with dielectric constants of 9.4 and 23. A relatively short cycle time ($5{\sim}10\;sec$) due to the lack of the time-consuming "purging and pumping" process and the capability of multi-wafer processing of the proposed technology offer a very high through-put in addition to a lower cost.

Structural and Piezoelectric Properties of MnO2-Doped PZT-PSN Ceramics for Ultrasonic Vibrator (초음파 진동자용 MnO2가 Doping된 PZT-PSN 세라믹스의 구조 및 압전 특성)

  • Cha, Yoo-Jeong;Kim, Chang-Il;Kim, Kyoung-Jun;Jeong, Young-Hun;Lee, Young-Jin;Lee, Hai-Gun;Paik, Jong-Hoo
    • Korean Journal of Materials Research
    • /
    • v.19 no.4
    • /
    • pp.198-202
    • /
    • 2009
  • For use in ultrasonic actuators, we investigated the structural and piezoelectric properties of $(1\;-\;x)Pb(Zr_{0.515}Ti_{0.485})O_3$ - $xPb(Sb_{1/2}Nb_{1/2})O_3$ + 0.5 wt% $MnO_2$ [(1 - x)PZT - xPSN + $MnO_2$] ceramics with a variation of x (x = 0.02, 0.04, 0.06, 0.08). All the ceramics, which were sintered at $1250^{\circ}C$ for 2 h, showed a typical perovskite structure, implying that they were well synthesized. A homogeneous micro structure was also developed for the specimens, and their average grain size was slightly decreased to $1.3{\mu}m$ by increasing x to 0.8. Moreover, a second phase with a pyrochlore structure appeared when x was above 0.06, which resulted in the deterioration of their piezoelectric properties. However, the 0.96PZT-0.04PSN+$MnO_2$ ceramics, which corresponds with a morphotropic phase boundary (MPB) composition in the (1 - x)PZT - xPSN + $MnO_2$ system, exhibited good piezoelectric properties: a piezoelectric constant ($d_{33}$) of 325 pC/N, an electromechanical coupling factor ($k_p$) of 70.8%, and a mechanical quality factor ($Q_m$) of 1779. The specimens with a relatively high curie temperature ($T_c$) of $305^{\circ}C$ also showed a significantly high dielectric constant (${\varepsilon}_r$) value of 1109. Therefore, the 0.96PZT - 0.04PSN + $MnO_2$ ceramics are suitable for use in ultrasonic vibrators.

Structural and Electrical Properties of Amorphous 2Ti4O12 Thin Films Grown on TiN Substrate (TiN 기판 위에 성장시킨 비정질 BaSm2Ti4O12 박막의 구조 및 전기적 특성 연구)

  • Park, Yong-Jun;Paik, Jong-Hoo;Lee, Young-Jin;Jeong, Young-Hun;Nahm, Sahn
    • Korean Journal of Materials Research
    • /
    • v.18 no.4
    • /
    • pp.169-174
    • /
    • 2008
  • The structural and electrical properties of amorphous $BaSm_2Ti_4O_{12}$ (BSmT) films on a $TiN/SiO_2/Si$ substrate deposited using a RF magnetron sputtering method were investigated. The deposition of BSmT films was carried out at $300^{\circ}C$ in a mixed oxygen and argon ($O_2$ : Ar = 1 : 4) atmosphere with a total pressure of 8.0 mTorr. In particular, a 45 nm-thick amorphous BSmT film exhibited a high capacitance density and low dissipation factor of $7.60\;fF/{\mu}m2$ and 1.3%, respectively, with a dielectric constant of 38 at 100 kHz. Its capacitance showed very little change, even in GHz ranges from 1.0 GHz to 6.0 GHz. The quality factor of the BSmT film was as high as 67 at 6 GHz. The leakage current density of the BSmT film was also very low, at approximately $5.11\;nA/cm^2$ at 2 V; its conduction mechanism was explained by the the Poole-Frenkel emission. The quadratic voltage coefficient of capacitance of the BSmT film was approximately $698\;ppm/V^2$, which is higher than the required value (<$100\;ppm/V^2$) for RF application. This could be reduced by improving the process condition. The temperature coefficient of capacitance of the film was low at nearly $296\;ppm/^{\circ}C$ at 100 kHz. Therefore, amorphous BSmT grown on a TiN substrate is a viable candidate material for a metal-insulator-metal capacitor.