• Title/Summary/Keyword: High density sludge

Search Result 42, Processing Time 0.025 seconds

A Study on the Availability Modelling and Assessment with Failure Density Function of Major Equipment for a Sewage Treatment Plant (하수처리장 주요 기자재의 고장확률밀도함수를 이용한 가용도 모델링 및 평가에 관한 연구)

  • Lee, Hong-Cheol;Kwak, Pilljae;Lee, Hyundong;Hwang, In-Ju
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.11
    • /
    • pp.763-768
    • /
    • 2013
  • The simulation investigation on the availability with failure density function of major equipment for a sewage treatment plant has been carried out. This study focuses on the availability of the plant and criticality with equipment module induced by component layout and its failure function. The equipment classification of sewage treatment plant and its failure function are established. Also solution methodologies are introduced as Monte-Carlo simulation method and event algorithm for uncertainty problem. The availability in the case of serial connection of equipment with all exponential function is calculated as around 50.4%. In other case of parallel combination with back up equipment, the availability showed over 80.1%. The criticality that a ffects availability showed high value over 77% in the dehydration and concentration process of sludge.

Effects of Current Density and Electrolyte on COD Removal Efficiency in Dyeing Wastewater Treatment by using Electro-coagulation (전기 응집법을 이용한 염색 폐수의 처리에서 전류 밀도와 전해질의 COD 제거율에 대한 영향)

  • Jang, Seong-Ho;Kim, Go-Eun;Kang, Jeong-Hee;Ryu, Jae-Yong;Lee, Won-ki;Lee, Jae-Yong;Park, Jin-Sick
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.7
    • /
    • pp.653-659
    • /
    • 2018
  • In the industrial wastewater that occupies a large proportion of river pollution, the wastewater generated in textile, leather, and plating industries is hardly decomposable. Though dyeing wastewater has generally been treated using chemical and biological methods, its characteristics cause treatment efficiencies such as chemical oxygen demand (COD) and suspended solids (SS) to be reduced only in the activated sludge method. Currently, advanced oxidation technology for the treatment of dyeing wastewater is being developed worldwide. Electro-coagulation is highly adapted to industrial wastewater treatment because it has a high removal efficiency and a short processing time regardless of the biodegradable nature of the contaminant. In this study, the effects of the current density and the electrolyte condition on the COD removal efficiency in dyeing wastewater treatment by using electro-coagulation were tested with an aluminum anode and a stainless steel cathode. The results are as follows: (1) When the current density was adjusted to $20A/m^2$, $40A/m^2$, and $60A/m^2$ under the condition without electrolyte, the COD removal efficiency at 60 min was 62.3%, 72.3%, and 81.0%, respectively. (2) The removal efficiency with NaCl addition was 7.9% higher on average than that with non-addition at all current densities. (3) The removal efficiency with $Na_2SO_4$ addition was 4.7% higher on average than that with non-addition at all current densities.

Density and Water Absorption Characteristics of Artificial Lightweight Aggregates containing Stone-Dust and Bottom Ash Using Different Flux (폐석분 및 바텀애시를 사용한 인공경량골재의 융제(Flux) 종류에 따른 밀도 및 흡수율 특성)

  • Han, Min-Cheol;Shin, Jae-Kyung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.49-55
    • /
    • 2012
  • In this paper, the physical properties of lightweight aggregate such as density and water absorption according to addition ratio and type of flux were investigated. When using $Na_2CO_3$ as flux of lightweight aggregate, burnability was available at low burning temperature and water absorption increased. And as increasing addition ratio of $CaCO_3$, NaOH, $Fe_2O_3$, absorption decreased and $CaCO_3$, NaOH, $Fe_2O_3$ were considered improper to use flux of lightweight aggregate because of high dried density. $Na_2SO_4$ was proper to use flux of lightweight aggregate due to dried density $1.35{\sim}1.50g/cm^3$ and lower absorption. When using glass abrasive sludge as flux of lightweight aggregate, dried density and water absorption were in the range of $1.45{\sim}1.55g/cm^3$ and 9~12% respectively. It was indicated that as increasing addition ratio of blast furnace slag powder, density increased whereas absorption decreased. In use of oxidizing slag as flux, artificial lightweight aggregate which have dried density $1.46g/cm^3$, water absorption 8,5 % can be manufactured at 10 % of addition ratio.

  • PDF

Characteristics of Sintered Bodies Made from the System of Paper Sludge Ash - Fly Ash - Clay (종이재-석탄회-점토계 소지를 이용한 소결체의 특성 연구)

  • Hong, Jin-Ok;Kang, Seung-Gu;Lee, Ki-Gang;Kim, Yoo-Taek;Kim, Young-Jin;Kim, Jung-Hwan;Park, Myoung-Sik
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.10
    • /
    • pp.908-913
    • /
    • 2001
  • Paper sludge Ash (PA) and Fly Ash (FA) wastes are usually land-filled for reclamation or substituted for cements as a resource. It could also offer some advantages when they are substituted for clay to preserve the environment. To recycle those wastes, the sintered specimen made of PA-FA-Clay system were examined to find the microstructure and physical properties. The ratio of clay to wastes was fixed as 30:70 by wt%, while PA to FA within waste portion were varied in the range of $1:6{\sim}7:0$. Those specimens were fired in $1150{\sim}1350^{\circ}C$. It was found that the relative density of sintered specimen was increased with amount of PA added at low sintering temperature (i.e, $1150{\sim}1200^{\circ}C$). This is due to increased amount of liquid during sintering. It is shown, however that at high sintering temperature ($1250{\sim}1350^{\circ}C$), the relative density of specimens was decreased with amount of PA added. This is because of overfiring phenomenon which may be able to induce an inhomogeneous microstructure and increased porosity. The mechanical properties of sintered specimen were depended upon the homogeneity of microstructure in accordance with SEM (Scanning Electron Microscopy) and pore size distribution analysis. For example, the compressive strength of 10PA-60FA-30Clay specimen sintered at $1225^{\circ}C$ was twice higher than that of 70PA-30Clay specimen even thought the relative density of those specimen was similar. This decreased strength of 70PA-30Clay specimen appears to be an inhomogeneity of microstructure due to overfiring.

  • PDF

Characterization of Artificial Aggregates Fabricated by Using Various Forming Methods (다양한 성형법으로 제조된 인공 골재의 특성)

  • Kang, Seung-Gu
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.94-101
    • /
    • 2009
  • The physical properties of artificial aggregates made from clay and inorganic wastes with poor plasticity depends largely on forming method. The artificial aggregates composing of coal fly ash, stone sludge and clay were fabricated using 4 different forming methods and those physical properties were comparatively analyzed. The surface of aggregates made through the extrusion forming process was dense and smooth but was rough for the aggregates obtained by crushing a tile-shaped green body. The aggregates made by pelletizing process had a weak green strength and bumpy surface. The shell generated at surface during a high temperature sintering process induced the most aggregates to be bloated due to a dense shell. But the aggregates made through pelletizing process with dense surface layer showed no significant change in bulk density with sintering temperatures. The water absorption of aggregates decreased with sintering temperature, and that of pelletized specimen was standing $1.8{\sim}2.2$ times higher than that of made by other forming methods. It is concluded that the aggregates having various properties could be fabricated from one batch by using different forming methods.

An Experimental Study on Properties of Light-Weight Foamed Concrete Using the Waste Concrete Powder (폐콘크리트 미분을 사용한 경량기포콘크리트의 특성에 관한 실험적 연구)

  • Choi, Hun-Gug;Kim, Jae-Won;Seo, Jung-Pil;Lee, Jung-Goo;Kang, Cheol;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.04a
    • /
    • pp.75-78
    • /
    • 2007
  • The recycling program about waste concrete is being progressed to national research. But research on waste concrete powder which is occurred in control process of concrete powder is not enough. Waste concrete powder includes in $SiO_2,\;Al_2O_3$, and CaO so that the create of tobermorite is possibile through Hydrothermal Syntesis Reaction. Tobermorite have an advantage of high strength, sulphuric acid resistance and the lower drying shrinkage. Accordingly, this study investigate in properties of light-weight foamed concrete made with waste concrete powder. As a results, light-weight foamed concrete made with waste concrete powder is the higher than stone powder sludge of density and porosity, and the tower compressive strength. Therefore, it is thought that light-weight foamed concrete using waste concrete powder is possible.

  • PDF

The Study on the Phenol Removal Characteristics by using AOP Processes (고도산화기술 공정을 이용한 페놀 제거 특성 연구)

  • Kim, Sung-Joon;Gwak, Gyu-dong;Won, Chan-Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.2
    • /
    • pp.303-310
    • /
    • 2010
  • Recently distinguished AOP means technology resolving organic compounds in water to harmless compounds such as $CO_2$ and $H_2O$ by creating OH radical ($OH{\cdot}$) with more powerful oxidation than general oxidants. It has merits which the 2nd pollution is not caused since it uses solar energy, sludge doesn't take place, it can be applied to high-density waste water and it oxidizes non-biodegradable organic compounds more easily. The purpose of the study was to examine about removable characteristics of phenol which was a non-biodegradable organic matter with UV/$O_3$/Catalyst processes which is one out of AOP and to present applicability of photocatalyst and the optimum conditions of treatment. The study regarded initial phenol concentration, initial pH, photocatalyst amount and flow as its conditions. As the results, the test had the highest removable efficiency (92%) when initial phenol concentration was 100 mg/L, initial pH 7, photocatalyst amount 6L and flow 1.5 mg/min. The removable efficiency was increased as much as initial phenol concentration was increased, when initial pH was 7 (neutrality), photocatalyst amount was increased and flow was increased. It was checked that the optimum HRT was 12 hours. Therefore, phenol is enough removable with UV/$O_3$/Catalyst process and its prospect in the future is expected.

Earthworm harvesting efficiency of earthworm(Eisenia fetida) attracting trap in the vermicomposting bed (지렁이 사육상에서 지렁이 유인장치에 의한 줄지렁이(Eisenia fetida) 유인효과)

  • Bae, Yoon-Hwan;Park, Kwang-Ill
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.2
    • /
    • pp.98-106
    • /
    • 2005
  • Population dynamics in the vermicomposting bed was investigated. And harvesting efficiencies of earthworm attracting traps with different attractants, mesh sizes of net and covering materials was evaluated. Peak density of earthworm population was $5kg/m^2$ and therafter its desity kept $4.4{\sim}5.0kg/m^2$. It was evaluated that suitable mesh size of the net was 7mm and proper covering materials of the earthworm attracting trap was cotton quilt. The earthworm harvesting efficiency of trap with attractant was much higher than that of trap without attractant. With more amount of attractant in the trap and with longer setting period of trap onto the vermicomposting bed, the earthworm attracting trap harvested more earthworms. Crushed pear-peel attracted much more earthworms than paper mill sludge, but it was difficult to supply enough amount of crushed pear-peel for practical need. Sugar solution(10%) with tab water was proven to be an alternative to crushed pear-peel because its attracting effect on earthworm was as high as crushed pear-peel and it was easy to prepare and supply in large quantity.

  • PDF

Effect of Inorganic Nanocomposite Based Liners on Deodorization of Kimchi

  • Chung, Kwon;Park, Hyun Jin;Shin, Yang Jai
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.27 no.2
    • /
    • pp.55-62
    • /
    • 2021
  • This study aims to reduce the rancid odor generated during the fermentation process of kimchi by inserting zinc oxide (ZnO) into an inorganic porous material with a high surface area to decompose or adsorb the fermentation odor. ZnO activated by the presence of moisture exhibits decomposition of rancid odors. Mixed with Titanium dioxide (TiO2), a photocatalyst. To manufacture the packaging liner used in this study, NaOH, ZnCl2, and TiO2 powder were placed in a tank with diatomite and water. The sludge obtained via a hydrothermal ultrasonication synthesis was sintered in an oven. After being pin-milled and melt-blended, the powders were mixed with linear low-density polyethylene (L-LDPE) to make a masterbatch (M/B), which was further used to manufacture liners. A gas detector (GasTiger 2000) was used to investigate the total amount of sulfur compounds during fermentation and determine the reduction rate of the odor-causing compounds. The packaging liner cross-section and surface were investigated using a scanning electron microscope-energy dispersive X-ray spectrometer (SEM-EDS) to observe the adsorption of sulfur compounds. A variety of sulfur compounds associated with the perceived unpleasant odor of kimchi were analyzed using gas chromatography-mass spectrometry (GC-MS). For the analyses, kimchi was homogenized at room temperature and divided into several sample dishes. The performance of the liner was evaluated by comparing the total area of the GC-MS signals of major off-flavor sulfur compounds during the five days of fermentation at 20℃. As a result, Nano-grade inorganic compound liners reduced the sulfur content by 67 % on average, compared to ordinary polyethylene (PE) foam liners. Afterwards SEM-EDS was used to analyze the sulfur content adsorbed by the liners. The findings of this study strongly suggest that decomposition and adsorption of the odor-generating compounds occur more effectively in the newly-developed inorganic nanocomposite liners.

Decomposition Characteristics of Non-Degradable Liquid Waste under High Temperature and High Pressure Conditions (고온 고압 조건에서의 난분해성 액상폐기물 분해 특성)

  • Lee, Gang-Woo;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.6
    • /
    • pp.1572-1578
    • /
    • 2007
  • The specified wastes consist of waste acid, waste alkali, waste oil, waste organic solvent, waste resin, dust, sludge, infectious waste, and others. Among these specified wastes, a great portion is liquid phase wastes. The purpose of this study is to develop the high temperature and high pressure (HTHP) treatment system for decomposition of the liquid phase specified waste (LPSW). For this, we analyzed the physical and chemical properties of the LPSW such as density, proximate analysis, ultimate analysis, heating values, and designed 0.3 ton/day HTHP treatment system. The LPSW tested in this experiment were prepared by adding TCE(trichloroethylene) and toluene to liquid phase waste which was brought into the commercial waste treatment company. The average density of waste oil (25 samples), waste resin (5 samples), and waste solvent (12 samples) was 0.99 g/mL, 0.91 g/mL, and 0.93 g/mL, respectively. And the average lower heating value of waste oil, waste resin, and waste solvent was 8,294 kcal/kg, 5,809 kcal/kg, and 7,462 kcal/kg, respectively. The DRE (Destruction & Removal Efficiency) of TCE and toluene were 99.95% and 99.73% at atmospheric pressure conditions and that were 99.99% and 99.82% at pressurized conditions, respectively. These results showed that TCE/toluene mixtures were properly decomposed over about 99.73% of DRE by the HTHP treatment system and pressurized conditions were more effective to destroy those pollutants than atmospheric pressure conditions. Also these systems could be directly applied to industries which try to treat the liquid phase specified waste within the regulation limit.

  • PDF