• 제목/요약/키워드: High density image resolution

검색결과 77건 처리시간 0.03초

Analysis of Texture Information with High Resolution Imagery for Characterizing Forest Stand

  • KIM T. G.;LEE K. S.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.14-16
    • /
    • 2004
  • Although there have been wide range of studies to characterize forest stands based upon spectral information of satellite image, it was not fully understood the texture information of forest stand using high resolution data. The objective of this study is to evaluate several texture measures for characterizing forest stand structure, such as species composition, diameter at breast height(DBH), stand density, and age. High resolution IKONOS satellite imagery data were acquired in August 200 lover the forested area near Ulsan, Korea. Primary forest types were plantation pine, mixed forest, and natural deciduous forest of stand age ranging from 10 to 50 years old. Several GLCM-based texture measures were compared with forest stand characteristics. In overall, a texture measure (contrast) calculated using red band were better to differentiate species and age group than other texture measures and near infrared bands.

  • PDF

구조물 내벽의 균열 검사를 위한 시스템 개발에 관한 연구 (A Study on the Development of the System for Inspecting Cracks in the Inner Wall for Structures)

  • 이상호;신동익;손영갑;이강문;마상준
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.480-483
    • /
    • 1997
  • In this paper, we have proposed an automatic inspection system for cracks on the surface of a structure. The proposed system consists of the imaging system and the veh~cle system. The imaging system. a set of optical sensor, lens, illuminator, storage and their configuration, images the scene and store it on the hard disk. We adopted a linescan camera of 5000 pixel density to achieve high resolution without loss of simplicity. The vehicle system that moves the optical system IS ~mplemented by an AGV. The AGV moves forward at constant velocity and avoid obstacles to acquire a stable image. We have cmplemented an experimental system and have acquired images of the wall of hallway. The image is of 0.1-mmipixel resolution and the scanning time IS about 1 mlsec. The allow able scan.

  • PDF

X-ray 단층촬영기법을 이용한 스트랜드보드의 내부공극구조에 관한 연구 (Internal Void Structure of Strandboard using X-ray Computed Tomography)

  • 오세창
    • Journal of the Korean Wood Science and Technology
    • /
    • 제36권6호
    • /
    • pp.13-22
    • /
    • 2008
  • 보드의 기계적 성질에 영향을 미치는 공극에 대하여 공극을 두가지로 분류하고 밀도에 따른 오에스비의 내부 공극구조의 특성에 대하여 살펴보고자 하였다. 스트랜드보드의 내부공극을 X-ray 단층촬영기로 측정하고 이미지분석 소프트웨어를 사용하여 밀도에 따른 공극의 분포와 공극의 함유량을 조사하였다. 측정 전에 보드의 밀도를 밀도측정기와 전건법으로 측정하였으며 이 두 방법에 의해 측정된 결과는 아주 높은 상관관계를 보여주었다. X-ray를 서로 다른 배율로 조사하여 획득한 이미지를 바탕으로 분석한 결과, 저해상도에서는 스트랜드간의 공극(macro-void)의 측정이 가능하나 스트랜드내의 미세공극(micro-void)은 이미지획득이 불가능하였다. 중해상도에서는 두가지 형태 모두의 이미지 획득이 가능하였고, 고해상도에서는 대부분의 미세공극 이미지의 획득이 가능하였다. 저배율을 채택하여 스트랜드간의 공극을 측정하고 스트랜드내의 미세공극은 관련식을 이용하여 추정하였다. 이를 통해 보드내부에 존재하는 스트랜드간의 공극분포를 파악할 수 있었으며 그 공극의 함유비율을 정확하게 산정할 수 있었다.

고해상도 다분광 인공위성영상자료 기반 시화 간척지 갯골 변화 양상 분석 (Analysis of Tidal Channel Variations Using High Spatial Resolution Multispectral Satellite Image in Sihwa Reclaimed Land, South Korea)

  • 정용식;이광재;채태병;유재형
    • 대한원격탐사학회지
    • /
    • 제36권6_2호
    • /
    • pp.1605-1613
    • /
    • 2020
  • 갯골은 갯벌 퇴적의 형성과 발달에 가장 핵심적인 구실을 하는 해안퇴적지형으로써, 갯벌 퇴적/침식 지형의 이해와 분포 파악에 있어 매우 중요한 지표로 여겨진다. 본 연구는 KOMPSAT 고해상도 위성영상자료를 활용하여 시화호 간척지의 방조제 수문 개방 이후 시기별 갯골 변화 양상을 파악하고, 고해상도 위성 영상의 활용 가능성 및 효율성 평가하는데 목적을 가진다. 갯골 선 추출을 위해 2009년, 2014년, 2019년 세 시기를 대상으로 KOMPSAT 2, 3 영상을 활용하였으며, 각 4개의 분광 밴드를 활용한 주성분 분석 및 기본 신경망 기반 감독 분류와 Normalized Difference Water Index, Matched Filtering 및 Spectral Angle Mapper 감독 분류 기반의 밴드 비연산 기법을 적용하였다. 추출한 갯골 정보의 검증을 위해 국토지리정보원 수치지도정보 및 중해상도 Landsat 7 ETM+ 영상자료를 활용하였다. 검증 결과, 갯골 선의 방향성 및 분포 양상 변화 감지 부분에서 KOMPSAT 영상 자료가 Landsat 7 영상과 비교하여 검증자료와 큰 일치성을 나타냈다. 하지만 갯골 선 밀도 분포 파악 및 퇴적 지형 발달과 관련된 유의미한 정보의 제공에 있어서는 한계를 가질 것으로 확인되었다. 본 연구는 국내 조간대 환경 이슈에 대응하는 방안으로써 KOMPSAT 영상 기반 고해상도 원격 탐사의 활용 가능성을 제시할 수 있을 것으로 기대되며, 조간대 환경 일대를 대상으로 하는 다종 플랫폼 영상 기반 융·복합 주제도 작성을 위한 기초연구자료로써 이용될 수 있을 것으로 기대된다.

Application of a newly developed software program for image quality assessment in cone-beam computed tomography

  • de Oliveira, Marcus Vinicius Linhares;Santos, Antonio Carvalho;Paulo, Graciano;Campos, Paulo Sergio Flores;Santos, Joana
    • Imaging Science in Dentistry
    • /
    • 제47권2호
    • /
    • pp.75-86
    • /
    • 2017
  • Purpose: The purpose of this study was to apply a newly developed free software program, at low cost and with minimal time, to evaluate the quality of dental and maxillofacial cone-beam computed tomography (CBCT) images. Materials and Methods: A polymethyl methacrylate (PMMA) phantom, CQP-IFBA, was scanned in 3 CBCT units with 7 protocols. A macro program was developed, using the free software ImageJ, to automatically evaluate the image quality parameters. The image quality evaluation was based on 8 parameters: uniformity, the signal-to-noise ratio (SNR), noise, the contrast-to-noise ratio (CNR), spatial resolution, the artifact index, geometric accuracy, and low-contrast resolution. Results: The image uniformity and noise depended on the protocol that was applied. Regarding the CNR, high-density structures were more sensitive to the effect of scanning parameters. There were no significant differences between SNR and CNR in centered and peripheral objects. The geometric accuracy assessment showed that all the distance measurements were lower than the real values. Low-contrast resolution was influenced by the scanning parameters, and the 1-mm rod present in the phantom was not depicted in any of the 3 CBCT units. Smaller voxel sizes presented higher spatial resolution. There were no significant differences among the protocols regarding artifact presence. Conclusion: This software package provided a fast, low-cost, and feasible method for the evaluation of image quality parameters in CBCT.

Chemical Shift Artifact Correction in MREIT

  • Minhas, Atul S.;Kim, Young-Tae;Jeong, Woo-Chul;Kim, Hyung-Joong;Lee, Soo-Yeol;Woo, Eung-Je
    • 대한의용생체공학회:의공학회지
    • /
    • 제30권6호
    • /
    • pp.461-468
    • /
    • 2009
  • Magnetic resonance electrical impedance tomography (MREIT) enables us to perform high-resolution conductivity imaging of an electrically conducting object. Injecting low-frequency current through a pair of surface electrodes, we measure an induced magnetic flux density using an MRI scanner and this requires a sophisticated MR phase imaging method. Applying a conductivity image reconstruction algorithm to measured magnetic flux density data subject to multiple injection currents, we can produce multi-slice cross-sectional conductivity images. When there exists a local region of fat, the well-known chemical shift phenomenon produces misalignments of pixels in MR images. This may result in artifacts in magnetic flux density image and consequently in conductivity image. In this paper, we investigate chemical shift artifact correction in MREIT based on the well-known three-point Dixon technique. The major difference is in the fact that we must focus on the phase image in MREIT. Using three Dixon data sets, we explain how to calculate a magnetic flux density image without chemical shift artifact. We test the correction method through imaging experiments of a cheese phantom and postmortem canine head. Experimental results clearly show that the method effectively eliminates artifacts related with the chemical shift phenomenon in a reconstructed conductivity image.

실험적으로 제작한 Videodensitometer의 디지털 영상처리와 임상적 적용에 관한 연구 (DIGITAL IMAGE PROCESSING AND CLINICAL APPLICATION OF VIDEODENSITOMETER)

  • 박관수;이상래
    • 치과방사선
    • /
    • 제22권2호
    • /
    • pp.273-282
    • /
    • 1992
  • The purpose of this study was to propose the utility which was evaluated the digital image processing and clinical application of the videodensitomery. The experiments were performed with IBM-PC/16bit-AT compatible, video camera(CCdtr55, Sony Co., Japan), an color monitor(MultiSync 3D, NEC, Japan) providing the resolution of 512×480 and 64 levels of gray. Sylvia Image Capture Board for the ADC(analog to digital converter) was used, composed of digitized image from digital signal and the radiographic density was measured by 256 level of gray. The periapical radiograph(Ektaspeed EP-21, Kodak Co., U. S. A) which was radiographed dried human mandible by exposure condition of 70 kVp and 48 impulses, was used for primary X-ray detector. And them evaluated for digitzed image by low and high pass filtering, correlations between aluminum equivalent values and the thickness of aluminum step wedge, aluminum equivalent values of sound enamel, dentin, and alveolar bone, the range of diffuse density for gray level ranging from 0 to 255. The obtained results were as follows: 1. The edge between aluminum steps of digitized image were somewhat blurred by low pass filtering, but edge enhancement could be resulted by high pass filtering. Expecially, edge enhancement between distal root of lower left 2nd molar and alveolar lamina dura was observed. 2. The correlation between aluminum equivalent values and the thickness of aluminum step wedge was intimated, yielding the coefficient of correlation r=0.9997(p<0.00l), the regression line was described by Y=0.9699X+0.456, and coefficient of variation amounting to 1.5%. 3. The aluminum equivalent values of sound enamel, dentin, and alvolar bone were 15.41㎜, 12.48㎜, 10.35㎜, respectively. 4. The range of diffuse density for gray level ranging from 0 to 255 was wider enough than that of photodenstiometer to be within the range of 1-4.9.

  • PDF

Image reconstruction algorithm for momentum dependent muon scattering tomography

  • JungHyun Bae;Rose Montgomery;Stylianos Chatzidakis
    • Nuclear Engineering and Technology
    • /
    • 제56권5호
    • /
    • pp.1553-1561
    • /
    • 2024
  • Nondestructive radiography using cosmic ray muons has been used for decades to monitor nuclear reactor and spent nuclear fuel storage. Because nuclear fuel assemblies are highly dense and large, typical radiation probes such as x-rays cannot penetrate these target imaging objects. Although cosmic ray muons are highly penetrative for nuclear fuels as a result of their relatively high energy, the wide application of muon tomography is limited because of naturally low cosmic ray muon flux. This work presents a new image reconstruction algorithm to maximize the utility of cosmic ray muon in tomography applications. Muon momentum information is used to improve imaging resolution, as well as muon scattering angle. In this work, a new convolution was introduced known as M-value, which is a mathematical integration of two measured quantities: scattering angle and momentum. It captures the objects' quantity and density in a way that is easy to use with image reconstruction algorithms. The results demonstrate how to reconstruct images when muon momentum measurements are included in a typical muon scattering tomography algorithm. Using M-value improves muon tomography image resolution by replacing the scattering angle value without increasing computation costs. This new algorithm is projected to be a standard nondestructive radiography technique for spent nuclear fuel and nuclear material management.

Comparison of Visual Interpretation and Image Classification of Satellite Data

  • Lee, In-Soo;Shin, Dong-Hoon;Ahn, Seung-Mahn;Lee, Kyoo-Seock;Jeon, Seong-Woo
    • 대한원격탐사학회지
    • /
    • 제18권3호
    • /
    • pp.163-169
    • /
    • 2002
  • The land uses of Korean peninsula are very complicated and high-density. Therefore, the image classification using coarse resolution satellite images may not provide good results for the land cover classification. The purpose of this paper is to compare the classification accuracy of visual interpretation with that of digital image classification of satellite remote sensing data such as 20m SPOT and 30m TM. In this study, hybrid classification was used. Classification accuracy was assessed by comparing each classification result with reference data obtained from KOMPSAT-1 EOC imagery, air photos, and field surveys.

Large Size and High Resolution Organic Light Emitting Diodes Based on the In-Ga-Zn-O Thin Film Transistors with a Coplanar Structure

  • Hong Jae Shin
    • 한국재료학회지
    • /
    • 제33권12호
    • /
    • pp.511-516
    • /
    • 2023
  • Amorphous In-Ga-Zn-O (a-IGZO) thin film transistors (TFTs) with a coplanar structure were fabricated to investigate the feasibility of their potential application in large size organic light emitting diodes (OLEDs). Drain currents, used as functions of the gate voltages for the TFTs, showed the output currents had slight differences in the saturation region, just as the output currents of the etch stopper TFTs did. The maximum difference in the threshold voltages of the In-Ga-Zn-O (a-IGZO) TFTs was as small as approximately 0.57 V. After the application of a positive bias voltage stress for 50,000 s, the values of the threshold voltage of the coplanar structure TFTs were only slightly shifted, by 0.18 V, indicative of their stability. The coplanar structure TFTs were embedded in OLEDs and exhibited a maximum luminance as large as 500 nits, and their color gamut satisfied 99 % of the digital cinema initiatives, confirming their suitability for large size and high resolution OLEDs. Further, the image density of large-size OLEDs embedded with the coplanar structure TFTs was significantly enhanced compared with OLEDs embedded with conventional TFTs.