• Title/Summary/Keyword: High density electron beam

Search Result 130, Processing Time 0.038 seconds

RECENT PROGRESS ON LASER DRIVEN ACCELERATORS AND APPLICATIONS

  • LEEMANS W. P.;ESAREY E.;GEDDES C.G.R.;SCHROEDER C. B.;TOTH CS.
    • Nuclear Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.447-456
    • /
    • 2005
  • Laser driven accelerators promise to provide an alternative to conventional accelerator technology. They rely on the excitation of large amplitude density waves in a plasma by the photon pressure of an intense laser. The density oscillations in which electrons and ions are separated, result in extremely large longitudinal electric fields that can be several orders of magnitude larger than those that are used in today's radio-frequency accelerators. Whereas this principle had been demonstrated experimentally for nearly two decades, it was not until 2004 that the production of high quality electron beams around 100 MeV was demonstrated. Analysis, aided by particle-in-cell simulations, as well as experiments with various plasma lengths and densities, indicate that tailoring the length of the accelerator, together with loading of the accelerating structure with beam, are the keys to production of mono-energetic electron beams. Increasing the energy towards a GeV and beyond will require reducing the plasma density and design criteria are discussed for an optimized accelerator module. The current progress and future directions are summarized through comparison with conventional accelerators, highlighting the unique short and long term prospects for intense radiation sources and high energy accelerators based on laser-drivenplasma accelerators.

Machining experimental and characteristic analysis of vaporized amplification sheets according to selection of high-power density electron beam drilling parameters (고출력 전자빔 드릴링 가공 파라미터 선정에 따른 증기화 증폭 시트의 가공 실험 및 특성 분석)

  • Kim, Hyun-Jeong;Jung, Sung-Taek;Wi, Eun-Chan;Lee, Joo-Hyung;Kang, Jun-Gu;Kim, Jin-Seok;Kang, Eun-Goo;Baek, Seung-Yub
    • Design & Manufacturing
    • /
    • v.14 no.2
    • /
    • pp.62-68
    • /
    • 2020
  • Recently, research on precise parts required in aerospace, ship, and automobile industries has been actively conducted. In this paper, electron beam drilling machining parameters were selected and experiments were conducted to compare processing characteristics analysis according to machining parameters through machining experiments of a vaporization amplification sheet to which STS 304 was applied. Also, as a result of measuring the machining. As the thickness gradually increased, it was confirmed that the electron beam could not reach the vaporization amplification sheet and thus melted on the surface of the material. As a result of the experimental analysis, it was analyzed that the vaporization explosion reaction of the vaporization amplification sheet was not normally performed due to the working distance (WD) according to the material thickness.

Fabrication of Solid Oxide Fuel Cells via Physical Vapor Deposition with Electron Beam: II. Unit Cell Performance (전자빔 물리증착을 이용한 고체 산화물 연료전지의 제조: II. 단전지 성능)

  • Kim, Hyoung-Chul;Park, Jong-Ku;Jung, Hwa-Young;Son, Ji-Won;Kim, Joo-Sun;Lee, Hae-Weon;Lee, Jong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.5 s.288
    • /
    • pp.299-303
    • /
    • 2006
  • In this paper, anode supported SOFC with columnar structured YSZ electrolyte was fabricated via Electron Beam Physical Vapor Deposition (EBPVD) method. Liquid condensation process was employed for the preparation of NiO-YSZ substrate and the high power electron beam deposition method was used for the deposition of YSZ electrolyte film. Double layered cathode with LSM-YSZ and LSM was printed on electrolyte via screen-printing method and fired at $1150^{\circ}C$ in air atmosphere for 3 h. The electrochemical performance and the long-term stability of $5{\times}5cm^2$ single cell were investigated with DC current-voltage characteristics and AC-impedance spectroscopy. According to the investigation, $5{\times}5cm^2$ sized unit cell showed the maximum power density of around $0.76W/cm^2$ at $800^{\circ}C$ and maintained the stable performance over 400 h.

Electron beam weldability of Niobium (니오븀의 전자빔 용접성)

  • An, Byung-Hun;Yoon, Jong-Won;Kim, Sook-Hwan
    • Laser Solutions
    • /
    • v.11 no.2
    • /
    • pp.15-19
    • /
    • 2008
  • Electron beam (EB) weldability of pure grade Nb sheet was studied. One of Nb sheets was as-annealed and the other was cold rolled. Microstructures, Vickers hardness, and transverse weld tensile test were carried out for the base metal, the heat affected zone (HAZ) and weld metal. In the case of the EB welds made using the annealed Nb sheeet, fine equiaxed grains and coarse grains were dominant at the base metal and the HAZ, respectively, and columnar grains were observed at the weld metal. For the EB welds made using the cold rolled Nb sheet, elongated grains in the rolling direction at the base metal, and the microstructures of the weld metal and the HAZ are similar to those of the EB welds made using the annealed Nb sheet, respectively. For both annealed and cold rolled Nb sheet, the width of the HAZs are unusually wide in spite of using high density heat source, i.e. electron beam, and the grain sizes of both HAZs are similar. When tensile test was carried out using the transverse weld specimens, the failure occurred at the HAZ for both EB welds made using Nb sheets annealed and cold rolled, respectively and the tensile strengths of both specimens were 161MPa. Vickers hardness of EB welds made using annealed Nb was 56-57 Hv at both base metal and weld metal, 52-53 Hv at the HAZ. On the other hand, Vickers hardness of EB welds made using cold rolled Nb was 97-99 Hv at the base metal, but the hardness values of weld metal were similar to those obtained at the weld metal of annealed Nb.

  • PDF

Epitaxial Growth of $Y_2O_3$ films by Ion Beam Assisted Deposition

  • Whang, C.N.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.26-26
    • /
    • 2000
  • High quality epitaxial Y2O3 thin films were prepared on Si(111) and (001) substaretes by using ion beam assisted deposition. As a substrate, clean and chemically oxidized Si wafers were used and the effects of surface state on the film crystallinity were investigated. The crystalline quality of the films were estimated by x-ray scattering, rutherford backscattering spectroscopy/channeling, and high-resolution transmission electron microscopy (HRTEM). The interaction between Y and Si atoms interfere the nucleation of Y2O3 at the initial growth stage, it could be suppressed by the interface SiO2 layer. Therefore, SiO2 layer of the 4-6 layers, which have been known for hindering the crystal growth, could rather enhance the nucleation of the Y2O3 , and the high quality epitaxial film could be grown successfully. Electrical properties of Y2O3 films on Si(001) were measured by C-V and I-V, which revealed that the oxide trap charge density of the film was 1.8$\times$10-8C/$\textrm{cm}^2$ and the breakdown field strength was about 10MV/cm.

  • PDF

A Study of Starting Current High Power Electron Beam Production (대 전력 전자빔 발생 초기 전류에 대한 연구)

  • Kim, Won-Sop
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.268-271
    • /
    • 2006
  • We have studied the backward wave oscillator, a power-pulsed generator oscillator at 20 GHz has higher frequency then current one. An absolute instability linear analysis was used for the purpose of designing the slow wave structure. A large diameter of the slow wave structure was adopted to prevent the breakdown brought about by the increase of power density.

  • PDF

Perpendicular Magnetization of FePt Alloy Films Epitaxially Grown on Si(100)

  • Ahn, Jae-Young;Lee, Nyun-Jong;Kim, Tae-Hee
    • Journal of Magnetics
    • /
    • v.14 no.4
    • /
    • pp.144-146
    • /
    • 2009
  • This study examined the structure and perpendicular magnetization of FePt films grown on Pt/Fe/MgO(100) buffered Si(100) substrates by molecular beam epitaxy. The [Fe(0.17nm)/Pt(0.2nm)]$_N$ multilayers were prepared at room temperature to form a $L1_0$-FePt phase after vacuum annealing. Perpendicular magnetic anisotropy (PMA) was observed in the films after at least 15 repetitions (N = 15) of Fe/Pt deposition and annealing at $300{^{\circ}C}$ for 1 hour. Careful structural analysis of the films was carried out by x-ray diffraction and high-resolution transmission electron microscopy. These results will assist in the development of the low temperature $L1_0$- FePt deposition process, which will be essential for future extremely high density magnetic recording media.

X-ray Micro-Imaging Technique and Its Application to Micro-Bubbles in an Opaque Tube (X-ray Micro-Imaging 기법 소개 및 불투명 튜브 내부의 마이크로 버블 가시화 연구)

  • Lee Sang-Joon;Kim Seok;Paik Bu-Geun
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.31-34
    • /
    • 2002
  • Imaging techniques using x-ray beam at high energies (>6KeV) such as contact radiography, projection microscopy, and tomography have been used to nondestructively discern internal structure of objects in material science, biology, and medicine. This paper introduces the x-ray micro-imaging method using 1B2 micro-probe line of PAL (Pohang Accelerator Laboratory). Cross-sectional information on low electron density materials can be obtained by probing a sample with coherent synchrotron x-ray beam in an in-line holography setup. Living organism such as plants, insects are practically transparent to high energy x-rays and create phase shift images of x-ray wave front. X-ray micro-images of micro-bubbles of $20\~120\;{\mu}m$ diameter in an opaque tube were recorded. Clear phase contrast images were obtained at Interfaces between bubbles and surrounding liquid due to different decrements of refractive index.

  • PDF

Fabrication of IGZO-based Oxide TFTs by Electron-assisted Sputtering Process

  • Yun, Yeong-Jun;Jo, Seong-Hwan;Kim, Chang-Yeol;Nam, Sang-Hun;Lee, Hak-Min;O, Jong-Seok;Kim, Yong-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.273.2-273.2
    • /
    • 2014
  • Sputtering process has been widely used in Si-based semiconductor industry and it is also an ideal method to deposit transparent oxide materials for thin-film transistors (TFTs). The oxide films grown at low temperature by conventional RF sputtering process are typically amorphous state with low density including a large number of defects such as dangling bonds and oxygen vacancies. Those play a crucial role in the electron conduction in transparent electrode, while those are the origin of instability of semiconducting channel in oxide TFTs due to electron trapping. Therefore, post treatments such as high temperature annealing process have been commonly progressed to obtain high reliability and good stability. In this work, the scheme of electron-assisted RF sputtering process for high quality transparent oxide films was suggested. Through the additional electron supply into the plasma during sputtering process, the working pressure could be kept below $5{\times}10-4Torr$. Therefore, both the mean free path and the mobility of sputtered atoms were increased and the well ordered and the highly dense microstructure could be obtained compared to those of conventional sputtering condition. In this work, the physical properties of transparent oxide films such as conducting indium tin oxide and semiconducting indium gallium zinc oxide films grown by electron-assisted sputtering process will be discussed in detail. Those films showed the high conductivity and the high mobility without additional post annealing process. In addition, oxide TFT characteristics based on IGZO channel and ITO electrode will be shown.

  • PDF