• 제목/요약/키워드: High coefficient of thermal expansion

검색결과 313건 처리시간 0.029초

선팽창 온도특성에 의한 저밀도 폴리에틸렌의 유리 천이온도에 대한 고찰 (Investigation on glass transition temperature of low density polyethylene by the characteristics of temperature dependent linear expansion)

  • 김봉흡;강도열;김재환
    • 전기의세계
    • /
    • 제30권7호
    • /
    • pp.441-447
    • /
    • 1981
  • As a preceeding work for the study on dielectric characterstics of a kind of low density polyethylene introduced morphological change by mechanical method, glass transition temperature which is regarded as a macroscopic aspect for relaxation of molecular chain segments has been observed by means of temperature dependent dilatometric measurement. The origina specimen clearly shows two knees which correspond to two peaks (.gamma. and .betha. peak) in the intenal friction measurement, suggesting the existence of separated glass transition temperatures at 150.deg.k and 260.deg.k respectively. On the specimen irradiated to 100 Mrad both glass transition temperatures tend to shift towards high temperature sides because of crosslinking by irradiation. furthemore an evidence can be seen that radiation effect, even in amorphous phase, is also slelctive depending on slight morphological differences. The specimen extended to four times in length shows a peculiar nature such as negative linear thermal expansion coefficient increasing with temperature between 220.deg.k and ambient temperature and that this fact is interpreted by considering that c axis of the lattice aligns along the extended direction by drawing, further c axis inherently possesses the characteristics of negative linear thermal expansion coefficient. For the observations that the relatively small positive linear expansion on the specimen extended to ca. two times as well as the part below 220.deg.k of the specimen extended to four times, it is considered for the reason of the facts that the incompletely oriented region indicated as the middle part of Peterlin's model tends to restore partially to orginal arrangement-a kind of phase transition-as increasing with temperature.

  • PDF

송전선 강심용 고장도 인하합금의 Mo 첨가의 영향 (Effect of Mo Addition of High-Strength Invar Alloy for Core of Transmission Line)

  • 김봉서;유경재;김병걸;이희웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.891-893
    • /
    • 1999
  • Invar alloys have characteristics with very low thermal expansion coefficient and low tensile strength. The mechanical properties of invar alloy have to being improved to apply for structural materials, especially for core of transmission line in electrical field. It is necessary low thermal expansion and high strength core material to transmit increased current capacity. In this paper, we investigated effect of Mo addition affected to thermal and mechanical properties and microstructure in Fe-Ni-Co ternary system.

  • PDF

Precision Molding of Polymeric Multi-Channel Optical Interconnection Devices Considering the Coefficient of Thermal Expansion of the Materials

  • Ahn, Seung-Ho;Han, Sang-Pil;Choi, Choon-Gi;Jeong, Myung-Yung
    • ETRI Journal
    • /
    • 제25권4호
    • /
    • pp.266-269
    • /
    • 2003
  • Polymeric multi-channel optical interconnection devices that are usually fabricated by transfer molding are indispensable for parallel interconnection in high speed, high capacity optical communication systems. This paper proposes a design technique considering the thermal behavior of materials, such as shrinkage and expansion during the molding process, to satisfy geometrical requirements that have less than 1 ${\mu}m$ tolerance. We also designed molds considering the thermal effects of the materials and fabricated multi-channel optical fiber connectors that have less than 1 ${\mu}m$ tolerance.

  • PDF

Development of Nano-Tungsten-Copper Powder and PM Processes

  • Lee, Seong;Noh, Joon-Woong;Kwon, Young-Sam;Chung, Seong-Taek;Johnson, John L.;Park, Seong-Jin;German, Randall M.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.377-378
    • /
    • 2006
  • Thermal management technology is a critical element in all new chip generations, caused by a power multiplication combined with a size reduction. A heat sink, mounted on a base plate, requires the use of special materials possessing both high thermal conductivity (TC) and a coefficient of thermal expansion (CTE) that matches semiconductor materials as well as certain packaging ceramics. In this study, nano tungsten coated copper powder has been developed with a wide range of compositions, 90W-10Cu to 10W-90Cu. Powder technologies were used to make samples to evaluate density, TC, and CTE. Measured TC lies among theoretical values predicted by several existing models.

  • PDF

열차폐코팅용 La2Ce2O7−Gd2Ce2O7−Y2Ce2O7 Pyrochlore계의 고온 열전도도 (High Temperature Thermal Conductivities in La2Ce2O7−Gd2Ce2O7−Y2Ce2O7 Pyrochlore System for Thermal Barrier Coatings)

  • 윤소영;이성민;심광보;김형태
    • 한국세라믹학회지
    • /
    • 제44권7호
    • /
    • pp.387-392
    • /
    • 2007
  • Thermal conductivities in $La_2Ce_2O_7-Gd_2Ce_2O_7-Y_2Ce_2O_7$ ternary system have been investigated. Pyrochlore phases formed at all ternary compositions and their sinterbilities were decreased with La addition. Thermal conductivities showed a minimum value at $La_2Ce_2O_7$ with moderate increases as $Y^{3+}$ and $Gd^{3+}$ ions replaced $La^{3+}$. Thermal expansion anomaly observed in $La_2Ce_2O_7$, which might be detrimental to TBC application, were suppressed by $Y^{3+}$ and $Gd^{3+}$ additions, with resultant thermal conductivities, $1.3{\sim}1.5 W/mK$ at $1000^{\circ}C$.

Thermal stress analysis around a cavity on a bimetal

  • Baytak, Tugba;Bulut, Osman
    • Structural Engineering and Mechanics
    • /
    • 제69권1호
    • /
    • pp.69-75
    • /
    • 2019
  • The plates made of two materials joined to each other having the different coefficient of thermal expansions are frequently encountered in the industrial applications. The stress analysis of these members under the effect of high-temperature variation has great importance in design. In this study, the stress analysis of the experimental model developed for the problem considered here was performed by the method of photothermoelasticity. The thermal strains were formed by the mechanical way and these were fixed by the strain freezing method. For the stress measurements, the method of slicing is applied which provides three-dimensional stress analysis. The analytical solution in the literature was compared with the related stress distribution obtained from the model. Moreover, the axisymmetric finite element model developed for the problem was solved by ABAQUS and the results obtained here compared with those of the experimental model and the analytical solution. As a result of this study, this experimental method and numerical model can be used for these type of thermal stress problems which have not been comprehensively analyzed yet.

고체산화물 연료전지의 페로브스카이트와 스피넬 구조를 갖는 Sm-Sr-(Co,Fe,Ni)-O 시스템의 공기극 특성 (Cathode Properties of Sm-Sr-(Co,Fe,Ni)-O System with Perovskite and Spinel Structures for Solid Oxide Fuel Cell)

  • 백승욱;김정현;백승환;배중면
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.133-136
    • /
    • 2007
  • Perovskite-structured samarium strontium cobaltite (SSC), which is mixed ionic electronic conductor (MIEC), is considered as a promising cathode material for intermediate temperature-operating solid oxide fuel cell (SOFC) due to its high electrocatalytic property. Cathode material containing cobalt (Co) is unstable at high temperature and has a relatively high thermal expansion property. In this paper, Sm-Sr-(Co,Fe,Ni)-O system with perovskite and spinel structures was investigated in terms of electrochemical property and thermal expansion property, respectively. Area specific resistance (ASR) was measured by ac impedance spectroscopy to investigate the electrochemical property of cathode, and thermal expansion coefficient (TEC) was measured by using dilatometer. Micro structure of cathode was observed by scanning electron microscopy. Perovskite-structured $Sm_{0.5}Sr_{0.5}CoO_{3-\delta}$ showed the ASR of $0.87{\Omega}/cm^{2}$, and $Sm_{0.5}Sr_{0.5}NiO_{3-\delta}$, which actually has a spinel structure, showed the lowest TEC value of $13.3{\times}10^{-6}/K$.

  • PDF

STACIR/AW 410SQmm 가공송전선의 경년열화와 이도거동(III) (Sag Behavior of STACIR/AW 410SQmm Overhead Conductor in accordance with the Aging)

  • 김상수;김병걸;신구용;이동일;민병욱
    • 한국전기전자재료학회논문지
    • /
    • 제19권3호
    • /
    • pp.280-286
    • /
    • 2006
  • As a way to expand electric capacity in conductor with electric power demand, STACIR/AW (Super Thermal-resistant Aluminum-alloy Conductors Aluminum-clad Invar-Reinforced) conductor which has high electric current and heat resistance characteristics have been developed. STACIR/AW power line is mechanical composite wire composed of steel cores for dip control and aluminum conductors for sending electric current. Recently, to ensure stable operation and prediction of wire life span of STACIR/AW conductor, a heat property of STACIR/AW conductor have been investigated. In the present work, a change of essential property with long term-heat exposure of STACIR/AW conductor and its structure material, INVAR wire and Al conductor, have been investigated. INVAR/AW is approximately $3.2\;{\mu}m/m^{\circ}C$. thermal expansion coefficient of INVAR/AW wire increases with time of heat exposure. the thermal expansion coefficient of INVAR/AW is markedly influenced by heat and mechanical treatment. creep rate(0.242) of STACIR/AW $410\;mm^2$ conductor at room temperature is much higher than that(0.022) at $210\;^{\circ}C$ STACIR/AW $410\;mm^2$ conductor has minimum creep rate at operating temperature. To lower creep rate with increase temperature is more unique characteristics in STACIR/AW. It is expected that STACIR/AW turned its tension to INVAR/AW at the transition temperature. at room temperature, the tension apportionment of INVAR/AW in STACIR/AW is about $50\;\%$. but whole tension of STACIR/AW is placed on the INVAR/AW alone of core metal above transition temperature.

CaO-MgO-$SiO_2$ 계 LTCC glass에 대한 특성 연구 (Study on properties of CaO-MgO-$SiO_2$ system glass-ceramic for LTCC)

  • 장명훈;마원철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.322-322
    • /
    • 2008
  • Low-temperature co-fired ceramics (LTCC) have turned out to be very promising technology in accordance with the rapid developments in semiconductor technology. The demands for compact electrical assemblies, smaller power loss as well as high signal density can be fulfilled by LTCC. And for the multi-layered ceramic devices with embedded passive components such as high dielectric constant decoupling capacitor, LTCC materials require the several conditions to avoid delamination and internal cracks. For the present study, diopside-based glass is chosen as the LTCC substrate material in view of its high coefficient of thermal expansion (CTE). From the experimental resultsn the influence of each element on the CTE change can be revealed.

  • PDF

해남 공룡화석 지 퇴적암의 물리적 성질: 쳐트 함량과의 관계 (Physical Properties of Sedimentary Rocks containing Dinosaur Trace Fossils in the Haenam: A Relationship with Chert Content)

  • 조현구;김수진;장세정
    • 한국광물학회지
    • /
    • 제15권2호
    • /
    • pp.132-139
    • /
    • 2002
  • 해남 공룡족흔화석을 포함하고 있는 퇴적암의 보존 방안을 연구하기 위하여 물리적 성질을 조사하였다. 9개의 시료를 선택하여 실내 실험을 통하여 공극률, 공극비, 건조 밀도, 함수비 및 포화도를 계산하였다. 3점꺾임강도는 만능재료시험기를 이용하여 측정하였고, 열팽창률은 팽창계를 사용하여 측정하였다. 우항리 퇴적암은 매우 낮은 공극률, 공극비 및 함수비를 가진다. 세일의 3점꺾임강도는 24.16~42.84, 사암은 16.34~43.52 $N/mm^2$로써 일반적인 퇴적암에 비하여 매우 낮다. 우항리 암석의 공극률이 작음에도 불구하고 강도가 낮은 이유는 미세한 열극이 암석 시료 내 여러 곳에 산재하여 있기 때문으로 생각된다. 열팽창률은 $14.7~21.3\Times10^{-6 }$ 범위인데, 이 값은 알루미나에 비하여 2~2.5배, 활석에 비하여 약 10배 정도 큰 값이다. 사암의 경우 쳐트의 양이 많을수록 공극률, 공극비와 함수비는 증가하며, 건조밀도와 포화도는 작아진다. 쳐트를 함유한 사암은 포함하지 않은 사암에 비하여 공극률과 열팽창률이 월등하게 높아서 강도가 낮다.