• 제목/요약/키워드: High calorific waste

검색결과 33건 처리시간 0.034초

폐목재 혼합에 따른 하수슬러지 탈수성 및 발열량 특성 연구 (A Study on the Characteristics of Dewaterability and Calorific Value of Sewage Sludge by Mixing Waste Wood)

  • 진용균;조은지;현완수;한현구;민선웅;여운호
    • 도시과학
    • /
    • 제8권1호
    • /
    • pp.45-49
    • /
    • 2019
  • The land treatment of sewage sludge is necessary because sewage sludge is increasing year by year. Therefore the research of sewage sludge solidification is underway as one of the land treatment methods. However, the problem with existing sewage sludge solidification is that the moisture content of sewage sludge is high and the dewaterability is low. Because of high drying cost the efficiency of energy production is low and the calorific value is insufficient. So the disposer is supplied with a filtration and caloric aid for improving dewaterability and calorific value. In this study, it is aimed to improve the fuel value of sewage sludge by confirming the feasibility of waste wood as a filtration and caloric aid. The dewaterability was measured by CST-test and the calorific value was measured by bomb calorimeter. As a result the dewaterability and calorific value are improved in all of the samples. The dewaterability was improved as the waste wood was added in the sewage sludge. By adjusting the waste wood adding rate into the sewage sludge the dewaterability and calorific value of sewage sludge will be improved. This study confirmed possibility of the waste wood used as filtration and caloric aid.

고 발열량 산업폐기물을 처리하는 소형 소각로의 소각 및 배출 특성 (Combustion and Emission Characteristics of High Calorific Industrial Waste Burned in a Small-scale Incinerator)

  • 이교우;이성준;김병화;이승우;정종수
    • 한국연소학회지
    • /
    • 제7권2호
    • /
    • pp.42-48
    • /
    • 2002
  • Experiments on burning process of the industrial wastes were performed on a nozzle-type grate in the industrial waste incinerator with a capacity of 160 kilograms per hour. The temporal variations of temperatures and concentrations of the exhaust gas were measured and analyzed. The synthetic leather waste with the moisture content less than 2% was used. The experimental results show that the CO concentration in the exhaust gas exceeds the limit, 600 ppm, and the gas temperature fluctuates too much when 8 kg of waste was supplied every 3 minutes, equivalent to the capacity of 160kg per hour. That is a typical burning mode of this high-calorific industrial waste. When the smaller unit waste input, 6kg per every 2 min 15 seconds was supplied, we could reduce the fluctuations of the furnace temperature and improve the exhaust emissions, especially the CO concentration.

  • PDF

Low Calorific Gasturbine 매립지 적용 및 유리온실 운용기술 설계 (Design for Landfill Gas Appliation by Low Calorific Gas Turbine and Green House Optimization Technology)

  • 허광범;박정극;이정빈;임상규
    • 신재생에너지
    • /
    • 제6권2호
    • /
    • pp.27-32
    • /
    • 2010
  • Low Calorific Gas Turbine (LCGT) has been developed as a next generation power system using landfill gas (LFG) and biogas made from various organic wastes, food Waste, waste water and Livestock biogas. Low calorific fuel purification by pretreatment system and carbon dioxide fixation by green house system are very important design target for the optimum applications of LCGT. Main troubles of Low Calorific Gas Turbine system was derived from the impurities such as hydro sulfide, siloxane, water contained in biogas. Even if the quality of the bio fuel is not better than natural gas, LCGT may take low quality gas fuel and environmental friendly power system. The mechanical characterisitics of LCGT system is a high energy efficiency (>70%), wide range of output power (30 kW - 30 MW class) and very clean emission from power system (low NOx). A green house has been designed for four different carbon dioxide concentration from ambient air to 2000 ppm by utilizing the exhaust gas and hot water from LCGT system. LCGT is expected to contribute achieving the target of Renewable Portfolio Standards (RPS).

생활폐기물 소각시설의 운영 실태 분석을 통한 에너지회수 효율 개선방안 검토 (A Study on Improvement Measures of Energy Recovery Efficiency through Analysis of Operational Status of Municipal Solid Waste Incineration Facilities)

  • 박상진;배재근
    • 한국폐기물자원순환학회지
    • /
    • 제35권8호
    • /
    • pp.762-769
    • /
    • 2018
  • This study was carried out to examine the improvement plan by analyzing the characteristics of imported wastes, operation rate, and benefits of energy recovery for incineration facilities with a treatment capacity greater than 50 ton/day. The incineration facility capacity increased by 3,280 tons over 15 years, and the actual incineration rate increased to 2,783 ton/day. The operation rate dropped to 76% in 2010 and then rose again to 81% in 2016. The actual calorific value compared to the design calorific value increased by 33.8% from 94.6% in 2002 to 128.4% in 2016. The recovery efficiency decreased by 29% over 16 years from 110.7% to 81.7% in 2002. Recovery and sales of thermal energy from the incinerator (capacity 200 ton/day) dominated the operation cost, and operating income was generated by energy sales (such as power generation and steam). The treatment capacity increased by 11% to 18% after the recalculation of the incineration capacity and has remained consistently above 90% in most facilities to date. In order to solve the problem of high calorific value waste, wastewater, leachate, and clean water should be mixed and incinerated, and heat recovery should be performed through a water-cooled grate and water cooling wall installation. Twenty-five of the 38 incineration facilities (about 70%) are due for a major repair. After the main repair of the facility, the operation rate is expected to increase and the operating cost is expected to decline due to energy recovery. Inspection and repair should be carried out in a timely manner to increase incineration and heat energy recovery efficiencies.

Low Calorific Gasturbine 매립지 적용 및 유리온실 운용기술 설계 (Design for Landfill Gas Application by Low Calorific Gas Turbine and Green House Optimization Technology)

  • 허광범;박정극;이정빈;임상규
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.244.1-244.1
    • /
    • 2010
  • Bio energy development by using Low Calorific Gas Turbine(LCGT) has been developed for New & Renewable energy source for next generation power system, low fuel and operating cost method by using the renewable energy source in landfill gas (LFG), Food Waste, water waste and Livestock biogas. Low calorific fuel purification by pretreatment system and carbon dioxide fixation by green house system are very important design target for evaluate optimum applications for bio energy. Main problems and accidents of Low Calorific Gas Turbine system was derived from bio fuel condition such as hydro sulfide concentration, siloxane level, moisture concentration and so on. Even if the quality of the bio fuel is not better than natural gas, LCGT system has the various fuel range and environmental friendly power system. The mechanical characterisitics of LCGT system is a high total efficiency (>70%), wide range of output power (30kW - 30MW class) and very clean emmission from power system (low NOx). Also, we can use co-generation system. A green house designed for four different carbon dioxide concentration from ambient air to 2000 ppm by utilizing the exhaust gas and hot water from LCGT system. We look forward to contribute the policy for Renewable Portfolio Standards(RPS) by using LCGT power system.

  • PDF

폐타이어 재 자원화를 위한 연구 (A Study on Recycling of Waste Tire)

  • 이석일
    • 한국환경보건학회지
    • /
    • 제26권4호
    • /
    • pp.38-44
    • /
    • 2000
  • Compared to other waste, waste tire has much discharge quantity and calorie. When we use waste heat from waste tire, it can be definitely better substitute energy than coal and anthracite in high oil price age. To use as a basic data for providing low cost and highly effective heating system, following conclusion was founded. Annual waste tire production was 19,596 million in 1999, Recycling ratio was almost 55% and more than 8.78 million was stored. Waste tire has lower than 1.5% sulfur contain ratio which is resource of an pollution, So it is a waste fuel which can be combustion based on current exhaust standard value without any extra SOx exclusion materials. Waste tire has 9,256Kcal/kg calorific value and it is higher than waste rubber, waste rubber, waste energy as same as B-C oil. When primary and second air quantity was 1.6, 8.0 Nm$^3$/min, dry gas production time was 270min and total combustion time was 360 min. In the SOx, NOx, HC of air pollution material density were lower than exhaust standard value at the back of cyclone and dusty than exhaust standard value without dust collector.

  • PDF

음식폐기물의 고형연료화를 위한 연소특성 연구 (A Study on Combustion Characteristics for Dry Food Waste)

  • 상병찬;이승정;이도연;엄태인
    • 유기물자원화
    • /
    • 제30권4호
    • /
    • pp.101-108
    • /
    • 2022
  • 본 연구는 유기성 폐기물 중 음식 폐기물의 고형연료제품으로서의 활용 가능성을 평가하기 위해 건조 음식 폐기물의 물리화학적 성질 및 연소 특성을 분석하였다. 기존 고형연료와의 성상 차이를 비교함으로써 건조음식 폐기물의 연료로서의 특성을 분석 하였으며, 연료화 후 연소 특성을 파악하였다.음식 폐기물 시료 2종과 고형연료 제조설비로부터 생산된 고형연료 시료 2종을 이용하여 원소분석, 공업분석, 발열량분석, TGA 분석 실험을 진행 하였으며 다음과 같은 결과를 얻었다. 건조 음식 폐기물의 수분함량과 회분함량은 각각 1.7~10.0 wt.%, 7.8~11.7 wt.%로 고형연료 품질기준을 만족하였으며, 건조 음식 폐기물의 저위발열량은 4,000~4,720 kcal/kg으로 고형연료의 품질기준인 3,500 kcal/kg보다 높은 것으로 나타났다. 건조 음식 폐기물의 TGA 분석 결과, 연소반응은 약 200℃에서 시작하여 약 500℃에서 연소 속도가 가장 높았다. 100~200℃ 사이에서 수분 증발 후, 200~500℃ 사이에서 초기 휘발분, 탄소 및 잔류 휘발분의 방출 및 연소가 이루어졌다. 건조 음식 폐기물의 높은 발열량 및 낮은 수분, 회분 함량을 바탕으로 향후 효율적 건조 기술 적용 및 엄격한 품질 기준 검사를 통해 건조 음식 폐기물의 고형연료화가 가능한 것으로 판단된다.

고발열량폐기물 및 탈수슬러지 혼합가스화를 통해 생산된 합성가스 압축, 이송 운전 특성 (Study on characteristics of compression and transportation of syngas produced from gasification process of high-calorific waste and Sewage Sludge)

  • 박수남;구재회
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.832-835
    • /
    • 2009
  • 폐기물의 감량화 및 자원화 기술 중 가장 대표적인 기술로 폐기물의 가스화 용융 기술을 들 수 있다. 폐기물 가스화 용융 기술은 폐기물 내의 탄소 및 수소 성분은 가스화 하여 CO, $H_2$가 주성분인 합성가스(synthesis gas, syngas)로 전환하고, 불연물은 용융하여 환경적으로 무해한 슬래그 또는 금속으로 회수하는 기술이다. 본 연구에서는 고발열량폐기물과 탈수슬러지 혼합가스화를 통하여 생산된 합성가스를 합성가스 압축기를 통하여 유용한 원료물질을 제조하는 공정인 수성가스 전환 반응(water gas shift reaction)과 가스화 반응기의 보조연료로 투입하기 위한 합성가스 압축, 이송 시스템의 운전 특성을 고찰하였다. 그 결과 고발열량폐기물과 탈수슬러지 혼합가스화에서 합성가스는 안정적으로 발생하였으며, 합성가스 압축, 이송시스템을 위한 정제설비에서의 분진제거는 99.07 %의 효율을 얻었고, 또한 합성가스 재순환 장치의 성능시험을 통하여 대기 중의 산소가 유입이 안 되는 기밀성을 확인하였다. 합성가스 압축, 이송 공급 유량 제어 실험 결과로는 합성가스 압축기 기동 시 합성가스 압축압력과 공급유량은 비례적으로 증감하는 것을 알 수 있었다.

  • PDF

熱分解에 의한 可燃性 廢棄物의 처리 및 資源回收에 관한 연구 (A Study on the Treatment of Combustible Wastes and the Resource Recovery by Pyrolysis)

  • Kim, Sam-Cwan;Zong, Moon-Shik
    • 한국환경보건학회지
    • /
    • 제13권1호
    • /
    • pp.17-33
    • /
    • 1987
  • As a result of technical advances and industrialization, the characteristics of domestic and industrial wastes are becoming more complex. Accordingly, improved treatment and disposal systems are being continuously sought to take account of complex characteristics and to comply with economic restrictions. In this study, an application of pyrolysis to the treatment of industrial wastes, including waste scrap rubber, waste raw material used in making the slipper bottom and waste PVC pipe, and the effectiveness of pyrolysis in resource recovery from these wastes were investigated. Batches of wastes were pyrolysed by external heating to a temperature of 400-800$\circ$C in a 32 mm diameter x 0.9 m long silica tube to produce combustible gases, oils and chars. Before the start of pyrolysis runs, the entire system was purged with nitrogen gas to exclude the air. The temperature inside the retort was controlled by the thermocouple in the gas stream, and referred to as the pyrolysis temperature. Under these conditions three products were separately collected and further analyzed. The results were summarized as follows. 1. More gases and less chars were produced with higher pyrolyzing temperature and with higher rates of heating, but the yields of oils tended downwards at temperatures above 700$\circ$C. Accordingly, operating conditions of pyrolysis should be varied with desired material. 2. Calorific values and sulfur contents of produced oils were sufficient and suitable for fuel use. Chars from waste rubber had high heating values with low sulfur contents, but calorific values of chars from waste PVC and waste slipper were as low as 3, 065-4, 273 kcal/kg and 942-2, 545 kcal/kg, respectively. Therefore, char from these wastes are inappropriate for fuel. 3. Soluble contents of Pb, Cd, Cu and Zn in chars from waste rubber and waste slipper were below the Specific Hazardous Waste Treatment Standards. However soluble contents of Pb and Cd in chars from waste PVC were one or two times and five or seven times exceedingly the Specific Hazardous Waste Treatment Standards, respectively. 4. Post high heating is desirable for treatment method of waste PVC which generates toxic hydrogen chloride. 5. The proportions of hydrogen, methane and ethane in produced gases were in the range of 3.99-35.61% V/V, 18.22-32.50% V/V and 5.17-5.87% V/V, respectively. 6. Pyrolysis is a useful disposal method in case of waste slipper, which was hardly combustible, and thus investigations of this kind of materials are required for effective management of industrial waste. 7. Based upon the possible market development for products, overall pyroly economics to take account of treatment values of noncombustible or hazardous materials should be evaluated.

  • PDF

폐기물부담금제 도입에 따른 인천시 폐기물의 에너지화 제고방안 연구 (A Study on Increasing the Energy Recovery from Waste at Incheon Metropolitan City according to Landfill Tax Introduction)

  • 임지영;김진한;박정환
    • 유기물자원화
    • /
    • 제23권2호
    • /
    • pp.21-27
    • /
    • 2015
  • 본 논문은 자원순환사회 구축을 목표로 필요한 재원마련을 위해 도입예정인 폐기물부담금제에 대응하기 위한 폐기물의 에너지화 제고방안을 인천시를 중심으로 평가하고 폐기물부담금제 도입을 위해 고려하여야 할 사항들을 제안하였다. 인천시의 폐기물 에너지화를 위한 주요 문제점으로 파악된 음식물 류폐기물의 반입량 감소에 따른 폐기물의 고발열량화, 종량제봉투에 혼입되어 배출되는 금속류, 건전지 등을 해결하기 위한 대책을 도출하였다.