• Title/Summary/Keyword: High bay light

Search Result 27, Processing Time 0.027 seconds

Investigation of the Angular Distribution of Luminous Intensity in the Symmetric Optical System of a COB LED High Bay (COB LED High Bay 대칭형 광학계의 배광각에 관한 연구)

  • Yoo, Kyung-Sun;Lee, Chang-Soo;Hyun, Dong-Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.6
    • /
    • pp.609-617
    • /
    • 2014
  • We have studied a chip-on-board LED lighting optical system for various luminous-intensity-distribution angles of the LED. An optical system that can accept different LEDs was made to reduce the systems's weight and size as we selected the chip-on-board LED, which is easy to apply to optical systems, unlike existing package-on-board LEDs. The luminous-intensity-distribution angles were $45^{\circ}$, $60^{\circ}$, $90^{\circ}$, and $120^{\circ}$. We researched these four types of optical systems. The $45^{\circ}$ and $60^{\circ}$ units were developed into reflectors, and the $90^{\circ}$ and $120^{\circ}$ units, into lenses. We checked the performance of the designed optical system through simulation and made a mock-up. Then we made a prototype of the chip-on-board LED high bay for use with the mock-up. After measuring its performance, we tested the luminous-intensity-distribution angles and compared them with simulation data. The resulting prototype was developed considering brightness, light uniformity, age, and economics which are suitable for a factory environment.

The ecological study of phytoplankton in Kyeonggi Bay, Yellow Sea Il. Light intensity, Transparency, Suspended substances (西海 京畿 植物플랑크톤에 對한 생態學的 硏究 II. 光度, 透明度, 浮游物質)

  • 최중기;심재형
    • 한국해양학회지
    • /
    • v.21 no.2
    • /
    • pp.101-109
    • /
    • 1986
  • To clarify the light condition which influence phytoplankton ecology in Kyeonggi Bay, light intensity, compensation depth, extinction coefficient, transparency and suspended substances are studied from May 1981 to September 1982.Light intensities lie within adequate values for the phytoplankton growth from spring to autumn. However, in the winter season the light intensities show less than 4.8mw/$\textrm{cm}^2$ on the surface resulting lower than optimum irradiance. Light intensity could be a limiting factor for phytoplankton growth in winter. Compensation depths seasonally varied over an annual period in this study. Especially, in winter, compensation depths are confined to only 1-2m below the surface. Extinction coefficient(K) values are relatively high over an year cycle. K values is highest in winter and lowest in summer. Transparency shows seasonal variation. Tansparency is high in summer and low in winter. Thus low light intensity, low compensation depth, low transparency and high extinction coefficient in winter are due to the high turbidity and high concentrations of suspended substances. High concentrations of S.S. in winter result from the sediments and detritus resuspended by the winter turbulence induced by the strong winter winds and the convectional mixing. In summer, good light condition and low turbidity may result from the thermal stability of water mass preventing the resuspension of sediment particles.

  • PDF

Development of numerical model for prismatic luminaire (돔팬던트 조명기구의 광학적 수치모델의 개발)

  • 이준형;최안섭
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.71-75
    • /
    • 2002
  • The prismatic luminaire named as a dome pendent is considered to save energy and improve visibility. This luminaire is using prismatic rome, and is designed to be used in commercial and industrial high-bay applications where quality light levels and energy savings are imperative. Although this kind of luminaire needs an accurate optic calculation process, the lumanires are manufactured without such a process. Therefore the purpose of this study is to develop a numerical model to accurately predict luminous intensity distribution of luminaire with prism.

  • PDF

Effects of Temperature and Irradiance on Growth Rate of Skeletonema marinoi-dohrnii Complex Isolated from Gyeonggi Bay, Korea (경기만 해역에서 분리된 Skeletonema marinoi-dohrnii complex의 생장률에 대한 수온과 광도의 영향)

  • Song, Tae Yoon;Yoo, Man Ho;Lee, Youngju;Choi, Joong Ki
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.2
    • /
    • pp.118-128
    • /
    • 2014
  • The growth rate of Skeletonema marinoi-dohrnii complex isolated from Gyeonggi Bay was studied in on axenic batch cultures, under non-nutrient limited condition to determine the growth rate over a wide range of light intensities ($5{\sim}500{\mu}mol\;m^{-2}s^{-1}$) and temperature ($2{\sim}35^{\circ}C$). This species exhibited its maximum specific growth rate of $2.48d^{-1}$ at a combination of $26.1^{\circ}C$ and light intensity of $197{\mu}mol\;m^{-2}s^{-1}$ as associated to optimal conditions of light and temperature. The results supported that S. marinoi-dohrnii complex are more likely to occur in late winter-spring blooms in the western and southern Korea as well as Gyeonggi Bay due to relatively high growth rates ($0.79{\sim}1.61d^{-1}$), considering the effect of temperature on nutrient competition among Skeletonema species. This study might be helpful to improve the precision and reality of a coastal ecosystem model.

Satellite Monitoring and Prediction for the Occurrence of the Red Tide in the Middle Coastal Area in the South Sea of Korea

  • Yoon, Hong-Joo;Kim, Young-Seup
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.1
    • /
    • pp.21-30
    • /
    • 2003
  • It was studied the relationship between the red tide occurrence and the meteorological and oceanographic factors, the choice of potential area for red tide occurrence, and the satellite monitoring for red tide. From 1990 through 2001, the red tide continuously appeared and the number of red tide occurrence increased every year. Then, the red tide bloomed during the periods of July and August. An important meteorological factor governing the mechanisms of the increasing in number of red tide occurrence was heavy precipitation. Oceanographic factors of favorable marine environmental conditions for the red tide formation included warm water temperature, low salinity, high suspended solid, low phosphorus, low nitrogen. A common condition for the red tide occurrence was heavy precipitation 2∼4 days earlier, and the favorable conditions for the red tide formation were high air temperature, proper sunshine and light winds for the day in red tide occurrence. From satellite images, it was possible to monitor the spatial distributions and concentrations of red tide. It was founded the potential areas for red tide occurrence in August 2000 by CIS conception: Yeosu∼Dolsan coast, Gamak bay, Namhae coast, Marado coast, Goheung coast, Deukryang bay, respectively.

The autecology of Zostera marina and Z. japonica at Sagumi Bay in the southwestern coast of Korea (남해 서부연안의 사구미 만에서 거머리말(Zostera marina)과 애기거머리말(Z. japonica)의 개체생태학)

  • Ok, Jae-Seung;Lee, Sang-Yong
    • Journal of Environmental Science International
    • /
    • v.23 no.9
    • /
    • pp.1563-1572
    • /
    • 2014
  • The autecology of the Zostera marina and Z. japonica was studied in populations growing in the same locality (Sagumi Bay, southwestern coast of Korea). Environmental factors and plant characteristics were examined monthly from August 2008 to September 2011. Along intertidal zone, Z. japonica (0.1-0.5 m above mean lower low water, MLLW) occurred above Z. marina (0.5-2.5 m MLLW). Tidal exposure at low tide during day was the highest in the spring and the lowest in the summer. Underwater Irradiance showed seasonal fluctuation that was the highest in spring and summer caused by tidal pattern. Strong seasonal patterns in water temperature appeared to control the seasonal variations in morphology, biomass and leaf growth. The seasonal pattern of Z. japonica resembled that of the Z. marina in morphological characteristics, above-and below-ground biomass, whereas it differed in shoot density and leaf elongation. Despite some similarities in seasonal growth patterns, the patterns of Z. japonica were lagged by 2 month of Z. marina. Seasonal variation in the above biomass of Z. marina was caused by changes in density and plant size, whereas that of Z. japonica was mainly caused by changes in shoot density. Zostera marina was more sensitive to high temperatures than Z. japonica, and the increasing water temperature during the summer became the factor that inhibits the growth of the Z. marina. Zostera Japonica, there is no clear change according to the amount of the light. It is because its habitat locates above that of Zostera marina so that the amount of the light that is necessary to growth is enough and in this condition, any preventing factor does not seem to work at all. Although underwater light getting into Zostera marina's habitat is very low level and there is no any hindrance to the survival of them, it prevents them from their productivity a bit.

Modeling the Effects of Periodic Intrusions of Outer Water on the Variation in the Phytoplankton Biomass and Productivity in a Small Embayment (작은 만에서 식물플랑크톤 생체량과 생산력 변화에 대한 외부 물의 정기적인 침입 효과의 모델링)

  • Ougiyama, Shu;Koizumi, Tsuneyoshi;Takeoka, Hidetaka;Yuichi, Hayami
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.4 s.109
    • /
    • pp.455-461
    • /
    • 2004
  • Effects of the different strengths and intervals of the periodic outer water intrusions (kyuchos and bottom intrusions) on the dynamics of phytoplankton biomass in a small embayment were examined with a simple numerical model. Environmental conditions of Kitanada Bay in the Bungo Channel were applied to the model. As the interval of the intrusion became longer and the amplitude became smaller, phytoplankton biomass In the bay became higher. On the other hand, as the interval became shorter and the amplitude became larger, the growth rate of the phytoplankton became higher. It suggested that when the intrusion was weaker, water exchange of the bay decreased and the phytoplankton in the bay accumulated at a high density, When water exchange was improved by active intrusions, availability of light would become more efficient and the growth rate of the phytoplankton was enhanced.

Diel Horizontal Migration of the Two Mysids Archaeomysis kokuboi and Acanthomysis sp. in the Sandy Shore Surf Zone of Yongil Bay, Eastern Korea (동해 영일만의 모래해변 쇄파대에 사는 곤쟁이류 Archaeomysis kokuboi와 Acanthomysis sp. 두 종의 주야 수평이동)

  • Suh, Hae-Lip;Jo, Soo-Gun;Kim, Kwang-Young
    • 한국해양학회지
    • /
    • v.30 no.6
    • /
    • pp.523-528
    • /
    • 1995
  • The mysids, Archaeomysis kokuboi and Acanthomysis sp., clearly exhibited the diel patterns of interspecific horizontal migration in the surf zone at a sandy shore in Yongil Bay, eastern Korea. Shoreward migration of Acanthomysis sp. at sunset resulted in the presence of significantly high numbers of mysids after dark at the bottom of 1 m depth. At first light, Acanthomysis sp. moved back to deeper water of>1 m depth in conjunction with a reverse migration by A. kokuboi. In the afternoon, A. kokuboi moved to offshore, then these species remained there. Although A. kokuboi has been considered an intertidal species in the exposed beaches with strong wave action, this is not the case in a sandy beach of Yongil Bay. We suggest that evidence for behavioral adaptation comes from the response of k. kokuboi to the sheltered beaches with weak wave action. The habitat shifts presumably provide this species with high availability of food materials in the surf zone.

  • PDF

The Influence of Nutrients Addition on Phytoplankton Communities Between Spring and Summer Season in Gwangyang Bay, Korea (광양만에서 춘계와 하계 영양염류 첨가가 식물플랑크톤군집의 성장에 미치는 영향)

  • Bae, Si Woo;Kim, Dongseon;choi, Hyun-Woo;Kim, Young Ok;Moon, Chang Ho;Baek, Seung Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.1
    • /
    • pp.53-65
    • /
    • 2014
  • In order to estimate the effect of nutrients addition for phytoplankton growth and community compositons in spring and summer season, we investigated the abiotic and biotic factors of surface and bottom waters at 20 stations of inner and offshore areas in Gwangyang Bay, Korea. Nutrient additional experiments were also conducted to identify any additional nutrient effects on phytoplankton assemblage using the surface water for the assay. Bacillariophyceae occupied more than 90% of total phytoplankton assembleges. Of these, diatom Eucampia zodiacus and Skeletonema costatum-like species was mainly dominated in spring and summer, respectively. Here, we can offer the season why the two diatom population densities were maintained at high levels in both seasons. First, light transparency of spring season in the euphotic zone was greatly improved in the bay. This improvement is one of important factor as tigger of increase in E. zodiacus population. Second, low salinity and high nutrient sources supplied by Seomjin River discharge are a main cue for strong bottom-up effects on S. costatum-like species during the summer rainy season. Based on the algal bio-assays, although maximum growth rate of phytoplankton communities at inner bay (St.8) were similar to those of outer bay (St.20), half-saturation constant ($K_s$) for phosphate at outer bay was slightly lower than those of inner bay. This implied that adapted cells in low nutrient condition of outer bay may have enough grown even the low phosphate and they also have a competitive advantage against other algal species under low nutrient condition. In particular, efficiency of N (+) addition in summer season was higher compared to control and P added experiments. In the bay, silicon was not a major limiting factor for phytoplankton growth, whereas nitrogen (N) was considered as a limiting factor during spring and summer. Therefore, a sufficient silicate supply form water mixing Si recycled from diatom decomposition and river water is favorable form maintaining diatom ecosystems in Gwangyang Bay.

Dimethylsulfide (DMS) in Seawater and the Overlying Atmosphere of the Masan Bay (해수 및 대기 중 DMS의 분석 : 마산만을 중심으로)

  • 김기현;오재룡;강성현;이수형;이강웅
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.4
    • /
    • pp.495-504
    • /
    • 1996
  • The concentrations of dimethylsulfide (DMS) were determined from both seawater and the overlying atmosphere from a station located in the Masan Bay area during a ten-day field campaign period of January 1996. The resulting data were also used to derive saturation ratios (SR) as well as sea-to-air fluxes of DMS. The concentrations and fluxes of DMS for both reservoirs varied extensively over two to three orders of magnitude: DMS in air and seawater were measured at 9 to 4,300 pptv (mean: 600 $\pm$ 1, 170, N=18) and at 0.24 to 10 nM (4.0 $\pm$ 3.4, N=13), respectively, while its fluxes were found from 0.02 to 23 mol $m^{-2} day^{-1} (3.1 \pm 6.8, N=11)$. A comparative analysis between our data and previously reported ones indicate that its atmospheric concentrations are abnormalously high, but its seawater counterparts are slightly lower than expected. In light of high pollution levels of organic-rich materials in and the associated high biological productivity of the study area, the sea-to-air-fluxes derived are notably low relative to those values typically reported from the coastal areas. These complicated features of DMS distributions/fluxes in the study site indicate that the near-by port- based anthropogenic activities from various industrial plants strongly interfere with natural processes leading to the production and release of DMS. It was however striking to find out relatively strong signals of diel cycle in its saturation ratios, concentration gradients between seawater and atmosphere, and the associated fluxes. Although it is yet difficult to provide meaningful explanations for the observed phenomena, the existence of clear diel cycle in some DMS-related parameters suggests that the natural processes may nonetheless exert important controls on the regional cycling of atmospheric sulfur species, of particular DMS.

  • PDF