• Title/Summary/Keyword: High bar

Search Result 1,602, Processing Time 0.029 seconds

A parametric shear constitutive law for reinforced concrete deep beams based on multiple linear regression model

  • Hashemi, Seyed Shaker;Sadeghi, Kabir;Javidi, Saeid;Malakooti, Mahmoud
    • Advances in concrete construction
    • /
    • v.8 no.4
    • /
    • pp.285-294
    • /
    • 2019
  • In the present paper, the fiber theory has been employed to model the reinforced concrete (RC) deep beams (DBs) considering the reinforcing steel bar-concrete interaction. To simulate numerically the behavior of materials, the uniaxial materials' constitutive laws have been employed for reinforcements and concrete and the bond stress-slip between the reinforcing steel bars and surrounding concrete are taken into account. Because of the high sensitivity of DBs to shear deformations, the Timoshenko beam theory has been applied. The shear stress-strain (S-SS) relationship has been defined by the modified compression field theory (MCFT) model. By modeling about 300 RC panels and employing a produced numerical database, a study has been carried out to show the sensitivity of the MCFT model. This is performed based on the multiple linear regression (MLR) models. The results of this research also illustrate how different parameters such as characteristic compressive strength of concrete, yield strength of reinforcements and the percentages of reinforcements in different directions get involved in the shear behavior of RC panels without applying complex theories. Based on the results obtained from the analysis of the MCFT S-SS model, a relatively simplified numerical S-SS model has been proposed. Application of the proposed S-SS model in modeling and analyzing the considered samples indicates that there is a good agreement between the simulated and the experimental test results. The comparison between the proposed S-SS model and the MCFT model indicates that in addition to the advantage of better accuracy, the main advantage of the proposed method is simplicity in application.

Cell-based Participant Management Model in Distributed Virtual Environment (셀분할 모델에 기반한 가상공간 다중참여자 관리기법)

  • 유석종
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.527-531
    • /
    • 2003
  • Previous researches on scalability problem of distributed virtual environment (DVE) have been mainly focused on spatial partitioning of area of interest (AOI). Congestion phenomena by avatar groups in AOI have been neglected relatively. However, AOI congestion is highly related to scalability of DVT because it exhausts system resources such as network bandwidth and rendering time, and could be a bar to perform collaboration among participants. In this paper, this will be defined as the problem that must be solved for the realization of the scalable DVE, and a model will be proposed to measure and control congestion situation in AOI. The purposes of the proposed model are to prevent high density of participants in AOI, and to protect stable collaboration in DVE. For evaluation of the performance it is compared with a previous method by defining the resource cost model which is dynamically activated to AOI congestion.

  • PDF

Novel Enhanced Flexibility of ZnO Nanowires Based Nanogenerators Using Transparent Flexible Top Electrode

  • Gang, Mul-Gyeol;Ha, In-Ho;Kim, Seong-Hyeon;Jo, Jin-U;Ju, Byeong-Gwon;Lee, Cheol-Seung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.490.1-490.1
    • /
    • 2014
  • The ZnO nanowire (NW)-based nanogenerators (NGs) can have rectifying current and potential generated by the coupled piezoelectric and semiconducting properties of ZnO by variety of external stimulation such as pushing, bending and stretching. So, ZnO NGs needed to enhance durability for stable properties of NGs. The durability of the metal electrodes used in the typical ZnO nanogenerators(NGs) is unstable for both electrical and mechanical stability. Indium tin oxide (ITO) is used as transparent flexible electrode but because of high cost and limited supply of indium, the fragility and lack of flexibility of ITO layers, alternatives are being sought. It is expected that carbon nanotube and Ag nanowire conductive coatings could be a prospective replacement. In this work, we demonstrated transparent flexible ZnO NGs by using CNT/Ag nanowire hybrid electrode, in which electrical and mechanical stability of top electrode has been improved. We grew vertical type ZnO NW by hydrothermal method and ZnO NW was coated with hybrid silicone coating solution as capping layer to enhance adhesion and durability of ZNW. We coated the CNT/Ag nanowire hybrid electrode by using bar coating system on a capping layer. Power generation of the ZnO NG is measured by using a picoammeter, a oscilloscope and confirmed surface condition with FE-SEM. As a results, the NGs using the CNT/Ag NW hybrid electrode show 75% transparency at wavelength 550 nm and small change of the resistance of the electrode after bending test. It will be discussed the effect of the improved flexibility of top electrode on power generation enhancement of ZnO NGs.

  • PDF

Evaluation of Load Capacity and Toughness of Porous Concrete Blocks Reinforced with GFRP Bars (GFRP 보강 다공성 콘크리트 블록의 내력 및 인성 평가)

  • Jung, Seung-Bae;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.5
    • /
    • pp.403-409
    • /
    • 2017
  • In this study, mix proportioning of porous concrete with compressive strength and porosity exceeding 3MPa and 30%, respectively, was examined and then load capacity and flexural toughness of the porous concrete block were evaluated according to the different arrangements of the GFRP bars. To achieve the designed requirements of porous concrete, it can be recommended that water-to-cement ratio and cement-to-coarse aggregate ratio are 25% and 20%, respectively, under the aggregate particle distribution of 15~20mm. The failure mode of porous concrete blocks reinforced with GFRP bars was governed by shear cracks. As a result, very few flexural resistance of the GFRP was expected. However, the enhanced shear strength of porous concrete due to the dowel action of the GFRP bars increased the load capacity and toughness of the blocks. The porous concrete blocks reinforced with one GFRP bar at each compressive and tensile regions had 2.1 times higher load capacity than the companion non-reinforced block and exhibited a high ductile behavior with the ultimate toughness index ($I_{30}$) of 43.4.

Effects of Iron and Silicon Additions on the Microstructures and Mechanical Properties of Aluminium Bronze (알루미늄 청동의 미세조직과 기계적 성질에 미치는 Fe 및 Si 첨가의 영향)

  • Kim, Jee-Hwan;Kim, Ji-Tae;Kim, Jin-Han;Park, Heung-Il;Kim, Sung-Gyoo
    • Journal of Korea Foundry Society
    • /
    • v.36 no.6
    • /
    • pp.202-207
    • /
    • 2016
  • The effects of Fe and Si additions on the microstructures and mechanical properties of aluminum bronze have been investigated. In a bar-type specimen cast in a die mold, the addition of Fe promoted the dendritic solidification of the ${\alpha}$ phase. The hardness values increased slightly in the Fe-added specimen with heat treatment, while these values was increased significantly in the specimens with Si or with combined additions of Fe and Si. When a centrifugal casting bush with combined addition of Fe and Si was heat treated, the FeSi compound within the matrix was finely dispersed, and was observed to be the origin of cup-cone type conical dimple failure in the tensile fracture surface. The mechanical properties of the heat treated centrifugal casting bushes, whose nominal alloy compositions were (Cu-7.0Al-0.8Fe-3.0Si)wt%, exhibited tensile strength of $703-781N/mm^2$, elongation of 6.6-11.7% and hardness of Hv 222.6-249.2. These high values of strength and elongation were attributed to the strengthening of the matrix due to the combined addition of Fe and Si, and to precipitation of fine the FeSi compound.

Vulnerable Occupations to COVID-19 and Measures for Protecting Workers from Infectious Biological Hazards at Workplaces (우리나라 COVID-19 확진자 직업 분포와 노동자 보호 방안)

  • Hong, Jongwoo;Choi, Sohyeon;Park, Jeongim
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.30 no.3
    • /
    • pp.256-269
    • /
    • 2020
  • Objectives: Everyone has been affected in some way by the COVID-19 pandemic, while some workers face threats to their health due to their jobs as well as worries about spreading the virus to intimate family members. With these concerns in mind, this study aims to identify occupations more vulnerable to COVID-19 and suggests the necessity of providing proper control measures against the risks in a timely manner in Korea. Methods: Daily briefing reports by the Korea Centers for Disease Control and Prevention (KCDC) were compiled (n=120) between January 20 and May 31, 2020. A total of 11,486 confirmed cases were included, which were sorted by occasion, area, and occupation. Among them, 2,411 cases were classified with specific occasions and/or areas of infection, while only 544 cases were determined with identifiable occupations. Guidelines for biological hazard management and COVID-19 guidelines for workplaces from domestic and international bodies were enlisted and compared. Results: It is unsurprising to find that healthcare professionals are experiencing the most immediate threat from COVID-19. In addition, service workers with face-to-face practices or indirect contact are also facing high risks. Religion facilities and eating places (dining, drinking bar, café, etc.,) follow. Guidelines and manuals for biological hazards are still lacking in Korea compared to the US and EU. Workplace manuals for managing COVID-19 are neither as comprehensive as the approaches of NIOSH's hierarchy of controls nor inclusive enough for minimizing secondary or tertiary suffering. Conclusions: The COVID-19 crisis is still ongoing and there is no doubt there will be more such events in the future. This analysis suggests that occupational health professionals, amid a pandemic including COVID-19, are urged to anticipate emerging risks related to all sorts of occupations, identify vulnerable workers and working environments, and plan and take actions to protect workers' health.

A Study on the VHCF Fatigue Behaviors of Hydrogen Attacked Inconel 718 Alloy (수소취화된 인코넬 718의 VHCF(Very High Cycle Fatigue) 피로특성에 관한 연구)

  • Suh, Chang-Min;Nahm, Seung-Hoon;Kim, Jun-Hyong;Pyun, Young-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.7
    • /
    • pp.637-646
    • /
    • 2016
  • This study is to investigate the influence of hydrogen attack and UNSM on fatigue behaviors of the Inconel 718 alloy. The decrease of the fatigue life between the untreated and the hydrogen attacked material is 10-20%. The fatigue lives of hydrogen attacked specimen decreased without a fatigue limit, similar to those of nonferrous materials. Due to hydrogen embrittlement, about 80% of the surface cracks were smaller than the average grain size of $13{\mu}m$. Many small surface cracks caused by the embrittling effect of hydrogen attack were initiated at the grain boundaries and surface scratches. Cracks were irregularly distributed, grew, and then coalesced through tearing, leading to a reduction of fatigue life. Results revealed that the fatigue lives of UNSM-treated specimens were longer than those of the untreated specimens.

Superconducting Properties of in situ Formed Multifilamentary Cu - Nb3Sn Composites and the Effects of Ti Addition on the Superconducting Properties (I) (In situ 법에 의한 Cu-Nb3Sn 복합재료선재의 초전도특성과 이에 미치는 Ti의 영향(I))

  • Park, H.S.;Suh, S.J.;Lee, U.D.;Ahn, J.M.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.6 no.1
    • /
    • pp.17-25
    • /
    • 1993
  • The Cu - $Nb_3Sn$ composites wire as a superconducting material was prepared by in situ method as follow: Cu - 15wt.% Nb alloys which were melted in a high -frequency induction furnace and casted in bar were cold-worked up to the final diameter of 0.24 mm, electroplated with Sn, pre-treated in two steps and then diffused at $550{\sim}650^{\circ}C$ for 24 ~ 96 hrs. The overall $J_c$ and $T_c$ of the specimens were measured by the four point-probe method at 10 K in the magnetic field of 0 Tesla. The overall $J_c$ of the composites wire which diffused at $550^{\circ}C$ after pre-treating in two steps were generally higher than those of the wire at either $600^{\circ}C$ or $650^{\circ}C$. For the specimens diffused at $550^{\circ}C$, the overall $J_c$ were increased until 72 hrs. of diffusion time and then decreased. However, in case of diffusion at $600^{\circ}C$ and $650^{\circ}C$, the overall $J_c$ were gradually decreased from the beginning. The maximum overall $J_c$ obtained in this experiment was $1.3{\times}10^4\;A/cm^2$, which was measured for the specimen diffused at $550^{\circ}C$ for 72 hrs. When the specimens were diffused at $550^{\circ}C$ for 72 hrs, after pre-treating, the measured critical temperature, $T_c$ was 16.19 K. Similar $T_c$ value were obtained in other specimens regardless of diffusion time and temperature.

  • PDF

Effect of Nb-content and Cooling Rate during ${\beta}$-quenching on Phase Transformation of Zr Alloys (${\beta}$-열처리시 Nb 첨가량과 냉각속도가 Zr 합금의 상변태에 미치는 영향)

  • Choi, B.K.;Kim, H.G.;Jeong, Y.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.5
    • /
    • pp.271-277
    • /
    • 2004
  • Zr-xNb alloys (x = 0.2, 0.8, 1.5 wt.%) were prepared to study the characteristics of the phase transformation in Zr-Nb system. The samples were heat treated at ${\beta}$-temperature ($1020^{\circ}C$) for 20 min and then cooled with different cooling rate. The microstructures of the specimens having the same compositions were changed with cooling rate and Nb content. The Widmanst$\ddot{a}$tten structure was observed on the furnace-cooled sample. The relationship between ${\alpha}$-Widmanst$\ddot{a}$tten and ${\beta}$-phase was the {0001}${\alpha}$//{110}${\beta}$, <11$\bar{2}$0>//<111>. The ${\beta}$-phase in Widmanst$\ddot{a}$tten structure of Zr-Nb alloys containing Nb more than solubility limit was identified as ${\beta}_{Zr}$ phase which was a stable phase at high temperature. In the water quenched samples, two kinds of martensite structures were observed depending on the Nb-concentration. The lath martensite was formed in Zr-0.2, 0.8 wt.% Nb alloys and the plate martensite having twins was formed in Zr-1.5 wt.% Nb alloy.

Molecular Behavior of $SF_6+H_2$ Structure II Hydrates (sII $SF_6+H_2$ 하이드레이트의 분자 거동)

  • Park, Da-Hye;Lee, Bo Ram;Sa, Jeong-Hoon;Sum, Amadeu K.;Lee, Kun-Hong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.122.2-122.2
    • /
    • 2011
  • Sulfur hexafluoride ($SF_6$), one of the most potent greenhouse gases, is known as a hydrate former and has been studied at the high pressure up to 1.3 GPa with gas mixtures and with aqueous surfactant. Since we regard $SF_6$ as a potential promoter molecule that can stabilize hydrate structure more effectively compare to the other promoters, further investigation is required to verify the stabilizing ability of $SF_6$ in the hydrate structure. However, the insoluble nature of $SF_6$ in water or gases hinders fine scale analyses. This work discusses the data obtained by using molecular dynamics simulations of structure II (sII) clathrate hydrates containing $SF_6$ and $H_2$. The simulations were performed using the TIP4P/Ice model for water molecule and a previously reported $SF_6$ molecular model (optimized at the pure $SF_6$ single phase system (Olivet and Vega, 2007)), and a $H_2$ molecular model (adapted from the THF+$H_2$ hydrate system (Alavi et al., 2006)). The simulations are performed to observe the stability of $SF_6$ and $H_2$ in the sII clathrate hydrate system with varying temperature and pressure conditions and occupancies of $SF_6$ and $H_2$, which cannot be easily tuned experimentally. We observe that stability of H2 enclathrated in the hydrate structure more affected by the occupancy of $SF_6$ molecules and temperature than pressure, which ranges from 1 to 100 bar.

  • PDF