• Title/Summary/Keyword: High accuracy

Search Result 8,865, Processing Time 0.043 seconds

Application of spatiotemporal transformer model to improve prediction performance of particulate matter concentration (미세먼지 예측 성능 개선을 위한 시공간 트랜스포머 모델의 적용)

  • Kim, Youngkwang;Kim, Bokju;Ahn, SungMahn
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.329-352
    • /
    • 2022
  • It is reported that particulate matter(PM) penetrates the lungs and blood vessels and causes various heart diseases and respiratory diseases such as lung cancer. The subway is a means of transportation used by an average of 10 million people a day, and although it is important to create a clean and comfortable environment, the level of particulate matter pollution is shown to be high. It is because the subways run through an underground tunnel and the particulate matter trapped in the tunnel moves to the underground station due to the train wind. The Ministry of Environment and the Seoul Metropolitan Government are making various efforts to reduce PM concentration by establishing measures to improve air quality at underground stations. The smart air quality management system is a system that manages air quality in advance by collecting air quality data, analyzing and predicting the PM concentration. The prediction model of the PM concentration is an important component of this system. Various studies on time series data prediction are being conducted, but in relation to the PM prediction in subway stations, it is limited to statistical or recurrent neural network-based deep learning model researches. Therefore, in this study, we propose four transformer-based models including spatiotemporal transformers. As a result of performing PM concentration prediction experiments in the waiting rooms of subway stations in Seoul, it was confirmed that the performance of the transformer-based models was superior to that of the existing ARIMA, LSTM, and Seq2Seq models. Among the transformer-based models, the performance of the spatiotemporal transformers was the best. The smart air quality management system operated through data-based prediction becomes more effective and energy efficient as the accuracy of PM prediction improves. The results of this study are expected to contribute to the efficient operation of the smart air quality management system.

Verification of Multi-point Displacement Response Measurement Algorithm Using Image Processing Technique (영상처리기법을 이용한 다중 변위응답 측정 알고리즘의 검증)

  • Kim, Sung-Wan;Kim, Nam-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.297-307
    • /
    • 2010
  • Recently, maintenance engineering and technology for civil and building structures have begun to draw big attention and actually the number of structures that need to be evaluate on structural safety due to deterioration and performance degradation of structures are rapidly increasing. When stiffness is decreased because of deterioration of structures and member cracks, dynamic characteristics of structures would be changed. And it is important that the damaged areas and extent of the damage are correctly evaluated by analyzing dynamic characteristics from the actual behavior of a structure. In general, typical measurement instruments used for structure monitoring are dynamic instruments. Existing dynamic instruments are not easy to obtain reliable data when the cable connecting measurement sensors and device is long, and have uneconomical for 1 to 1 connection process between each sensor and instrument. Therefore, a method without attaching sensors to measure vibration at a long range is required. The representative applicable non-contact methods to measure the vibration of structures are laser doppler effect, a method using GPS, and image processing technique. The method using laser doppler effect shows relatively high accuracy but uneconomical while the method using GPS requires expensive equipment, and has its signal's own error and limited speed of sampling rate. But the method using image signal is simple and economical, and is proper to get vibration of inaccessible structures and dynamic characteristics. Image signals of camera instead of sensors had been recently used by many researchers. But the existing method, which records a point of a target attached on a structure and then measures vibration using image processing technique, could have relatively the limited objects of measurement. Therefore, this study conducted shaking table test and field load test to verify the validity of the method that can measure multi-point displacement responses of structures using image processing technique.

A Inquiry of Zhang Bo-duan's Writings (장백단(張伯端)의 저술고(著述考))

  • Kim, Kyeongsoo
    • The Journal of Korean Philosophical History
    • /
    • no.29
    • /
    • pp.255-280
    • /
    • 2010
  • Zhang Bo-duan compiled about internal alchemy in Taoism. Although he lived in the mundane world, he wished to seek theory on neidan of Taoism(internal alchemy). After finding enlightenment, he elucidated that the enlightenment was a state of rising above world not needed to leave the world. After ages, he was admired as the founder of Taoism in Southern school and his Oh Jin Peon which contents internal alchemy was considered seriously to have more than 30 people who annotated with it until Ch'ing Empire. At his age of 80, he met the real person who gave him theory on neidan of Taoism(internal alchemy), its preface tells that he organized its main point, and then wrote Oh Jin Peon with it in 1075. Generally Zhang Bo-duan was known to leave three books as Oh Jin Peon, Guem Dan Sa Baek Ja, and Cheung Hwa Bi Mun, most of critics have been studying on the basis of them. However, it is not correct whether all of them is his writings and there is not exact analysis but simple belief about it. I think accuracy and details are indispensible in philosophical approach. The study not having verification about primary data is no more than a visionary projet which soon collapses. So the purpose of this study is adding the detail analysis on it and making its exact basis of philosophical approach. Zhang Bo-duan over his age of 80, became enlightened, in his old age handed down his student the secret as a record and theory on neidan of Taoism(internal alchemy). And not in his living but after his dying his status was soared. Because of his high status in internal alchemy Taoism, it seems that there are more interest in it and some published books which just leave his name. In this study, I accept Oh Jin Peon as a his real writing among unsure his writings and criticize systematically and classify its characteristics. And I demonstrate that Guem Dan Sa Baek Ja, Cheung Hwa Bi Mun couldn't be his real writings, these could be forgeries by posterity, with proposing some basis of the argument.

Introduction and Evaluation of the Production Method for Chlorophyll-a Using Merging of GOCI-II and Polar Orbit Satellite Data (GOCI-II 및 극궤도 위성 자료를 병합한 Chlorophyll-a 산출물 생산방법 소개 및 활용 가능성 평가)

  • Hye-Kyeong Shin;Jae Yeop Kwon;Pyeong Joong Kim;Tae-Ho Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1255-1272
    • /
    • 2023
  • Satellite-based chlorophyll-a concentration, produced as a long-term time series, is crucial for global climate change research. The production of data without gaps through the merging of time-synthesized or multi-satellite data is essential. However, studies related to satellite-based chlorophyll-a concentration in the waters around the Korean Peninsula have mainly focused on evaluating seasonal characteristics or proposing algorithms suitable for research areas using a single ocean color sensor. In this study, a merging dataset of remote sensing reflectance from the geostationary sensor GOCI-II and polar-orbiting sensors (MODIS, VIIRS, OLCI) was utilized to achieve high spatial coverage of chlorophyll-a concentration in the waters around the Korean Peninsula. The spatial coverage in the results of this study increased by approximately 30% compared to polar-orbiting sensor data, effectively compensating for gaps caused by clouds. Additionally, we aimed to quantitatively assess accuracy through comparison with global chlorophyll-a composite data provided by Ocean Colour Climate Change Initiative (OC-CCI) and GlobColour, along with in-situ observation data. However, due to the limited number of in-situ observation data, we could not provide statistically significant results. Nevertheless, we observed a tendency for underestimation compared to global data. Furthermore, for the evaluation of practical applications in response to marine disasters such as red tides, we qualitatively compared our results with a case of a red tide in the East Sea in 2013. The results showed similarities to OC-CCI rather than standalone geostationary sensor results. Through this study, we plan to use the generated data for future research in artificial intelligence models for prediction and anomaly utilization. It is anticipated that the results will be beneficial for monitoring chlorophyll-a events in the coastal waters around Korea.

The study of heavy rain warning in Gangwon State using threshold rainfall (침수유발 강우량을 이용한 강원특별자치도 호우특보 기준에 관한 연구)

  • Lee, Hyeonjia;Kang, Donghob;Lee, Iksangc;Kim, Byungsikd
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.11
    • /
    • pp.751-764
    • /
    • 2023
  • Gangwon State is centered on the Taebaek Mountains with very different climate characteristics depending on the region, and localized heavy rainfall is a frequent occurrence. Heavy rain disasters have a short duration and high spatial and temporal variability, causing many casualties and property damage. In the last 10 years (2012~2021), the number of heavy rain disasters in Gangwon State was 28, with an average cost of 45.6 billion won. To reduce heavy rain disasters, it is necessary to establish a disaster management plan at the local level. In particular, the current criteria for heavy rain warnings are uniform and do not consider local characteristics. Therefore, this study aims to propose a heavy rainfall warning criteria that considers the threshold rainfall for the advisory areas located in Gangwon State. As a result of analyzing the representative value of threshold rainfall by advisory area, the Mean value was similar to the criteria for issuing a heavy rain warning, and it was selected as the criteria for a heavy rain warning in this study. The rainfall events of Typhoon Mitag in 2019, Typhoons Maysak and Haishen in 2020, and Typhoon Khanun in 2023 were applied as rainfall events to review the criteria for heavy rainfall warnings, as a result of Hit Rate accuracy verification, this study reflects the actual warning well with 72% in Gangneung Plain and 98% in Wonju. The criteria for heavy rain warnings in this study are the same as the crisis warning stages (Attention, Caution, Alert, and Danger), which are considered to be possible for preemptive rain disaster response. The results of this study are expected to complement the uniform decision-making system for responding to heavy rain disasters in the future and can be used as a basis for heavy rain warnings that consider disaster risk by region.

Estimation of Mandibular Third Molar Development Using the Correlation in Dental Developmental Stages (치아 발육 단계의 상관관계를 이용한 하악 제3대구치 발육 평가)

  • Junyoung Kim;Hyuntae Kim;Teo Jeon Shin;Hong-Keun Hyun;Young-Jae Kim;Jung-Wook Kim;Ki-Taeg Jang;Ji-Soo Song
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.50 no.4
    • /
    • pp.373-384
    • /
    • 2023
  • This study aims to confirm the average chronologic age according to the developmental stages of the mandibular canine (L3), first and second premolars (L4, L5), and second and third molars (L7, L8) in children and adolescents, and to confirm the developmental stage of L3, L4, L5, and L7, which can estimate the development of L8. A total of 1,956 digital panoramic radiographs of healthy individuals aged between 6 and 15 years who visited Seoul National University Dental Hospital from January 2019 to December 2020 were selected. The developmental stages of L3, L4, L5, L7, and L8 on both sides were evaluated using the dental maturity scoring system proposed by Demirjian and Goldstein. The average age at which the follicle of L8 was first observed was around 9.34 ± 1.35 years and varied from 6 to 12 years. The possibility of agenesis of L8 was high when no traces of L8 were observed after the following stages: L3, L4, and L5 at the developmental stage F and L7 at the developmental stage E; the age was about 10 years. In estimating the development of L8, when only one tooth was considered, estimation accuracy with L5 was the highest, and there was no significant difference when all four teeth were included. This study showed the age distribution according to the developmental stages of L3, L4, L5, L7, and L8 in children and adolescents and confirmed the developmental stages of L3, L4, L5, and L7, which can be used to estimate the development of L8.

Development of deep learning network based low-quality image enhancement techniques for improving foreign object detection performance (이물 객체 탐지 성능 개선을 위한 딥러닝 네트워크 기반 저품질 영상 개선 기법 개발)

  • Ki-Yeol Eom;Byeong-Seok Min
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.99-107
    • /
    • 2024
  • Along with economic growth and industrial development, there is an increasing demand for various electronic components and device production of semiconductor, SMT component, and electrical battery products. However, these products may contain foreign substances coming from manufacturing process such as iron, aluminum, plastic and so on, which could lead to serious problems or malfunctioning of the product, and fire on the electric vehicle. To solve these problems, it is necessary to determine whether there are foreign materials inside the product, and may tests have been done by means of non-destructive testing methodology such as ultrasound ot X-ray. Nevertheless, there are technical challenges and limitation in acquiring X-ray images and determining the presence of foreign materials. In particular Small-sized or low-density foreign materials may not be visible even when X-ray equipment is used, and noise can also make it difficult to detect foreign objects. Moreover, in order to meet the manufacturing speed requirement, the x-ray acquisition time should be reduced, which can result in the very low signal- to-noise ratio(SNR) lowering the foreign material detection accuracy. Therefore, in this paper, we propose a five-step approach to overcome the limitations of low resolution, which make it challenging to detect foreign substances. Firstly, global contrast of X-ray images are increased through histogram stretching methodology. Second, to strengthen the high frequency signal and local contrast, we applied local contrast enhancement technique. Third, to improve the edge clearness, Unsharp masking is applied to enhance edges, making objects more visible. Forth, the super-resolution method of the Residual Dense Block (RDB) is used for noise reduction and image enhancement. Last, the Yolov5 algorithm is employed to train and detect foreign objects after learning. Using the proposed method in this study, experimental results show an improvement of more than 10% in performance metrics such as precision compared to low-density images.

Studies on Xylooligosaccharide Analysis Method Standardization using HPLC-UVD in Health Functional Food (건강기능식품에서 HPLC-UVD를 이용한 자일로올리고당 시험법의 표준화 연구)

  • Se-Yun Lee;Hee-Sun Jeong;Kyu-Heon Kim;Mi-Young Lee;Jung-Ho Choi;Jeong-Sun Ahn;Kwang-Il Kwon;Hye-Young Lee
    • Journal of Food Hygiene and Safety
    • /
    • v.39 no.2
    • /
    • pp.72-82
    • /
    • 2024
  • This study aimed to develop a scientifically and systematically standardized xylooligosaccharide analytical method that can be applied to products with various formulations. The analysis method was conducted using HPLC with Cadenza C18 column, involving pre-column derivatization with 1-phenyl-3-methyl-5-pyrazoline (PMP) and UV detection at 254 nm. The xylooligosaccharide content was analyzed by converting xylooligosaccharide into xylose through acid hydrolysis. The pre-treated methods were compared and evaluated by varying sonication time, acid hydrolysis time, and concentration. Optimal equipment conditions were achieved with a mobile phase consisting of 20 mM potassium phosphate buffer (pH 6)-acetonitrile (78:22, v/v) through isocratic elution at a flow rate of 0.5 mL/min (254 nm). Furthermore, we validated the advanced standardized analysis method to support the suitability of the proposed analytical procedure such as specificity, linearity, detection limits (LOD), quantitative limits (LOQ), accuracy, and precision. The standardized analysis method is now in use for monitoring relevant health-functional food products available in the market. Our results have demonstrated that the standardized analysis method is expected to enhance the reliability of quality control for healthy functional foods containing xylooligosaccharide.

A Study on the Medical Application and Personal Information Protection of Generative AI (생성형 AI의 의료적 활용과 개인정보보호)

  • Lee, Sookyoung
    • The Korean Society of Law and Medicine
    • /
    • v.24 no.4
    • /
    • pp.67-101
    • /
    • 2023
  • The utilization of generative AI in the medical field is also being rapidly researched. Access to vast data sets reduces the time and energy spent in selecting information. However, as the effort put into content creation decreases, there is a greater likelihood of associated issues arising. For example, with generative AI, users must discern the accuracy of results themselves, as these AIs learn from data within a set period and generate outcomes. While the answers may appear plausible, their sources are often unclear, making it challenging to determine their veracity. Additionally, the possibility of presenting results from a biased or distorted perspective cannot be discounted at present on ethical grounds. Despite these concerns, the field of generative AI is continually advancing, with an increasing number of users leveraging it in various sectors, including biomedical and life sciences. This raises important legal considerations regarding who bears responsibility and to what extent for any damages caused by these high-performance AI algorithms. A general overview of issues with generative AI includes those discussed above, but another perspective arises from its fundamental nature as a large-scale language model ('LLM') AI. There is a civil law concern regarding "the memorization of training data within artificial neural networks and its subsequent reproduction". Medical data, by nature, often reflects personal characteristics of patients, potentially leading to issues such as the regeneration of personal information. The extensive application of generative AI in scenarios beyond traditional AI brings forth the possibility of legal challenges that cannot be ignored. Upon examining the technical characteristics of generative AI and focusing on legal issues, especially concerning the protection of personal information, it's evident that current laws regarding personal information protection, particularly in the context of health and medical data utilization, are inadequate. These laws provide processes for anonymizing and de-identification, specific personal information but fall short when generative AI is applied as software in medical devices. To address the functionalities of generative AI in clinical software, a reevaluation and adjustment of existing laws for the protection of personal information are imperative.

The Usefulness of 18F-FDG PET to Differentiate Subtypes of Dementia: The Systematic Review and Meta-Analysis

  • Seunghee Na;Dong Woo Kang;Geon Ha Kim;Ko Woon Kim;Yeshin Kim;Hee-Jin Kim;Kee Hyung Park;Young Ho Park;Gihwan Byeon;Jeewon Suh;Joon Hyun Shin;YongSoo Shim;YoungSoon Yang;Yoo Hyun Um;Seong-il Oh;Sheng-Min Wang;Bora Yoon;Hai-Jeon Yoon;Sun Min Lee;Juyoun Lee;Jin San Lee;Hak Young Rhee;Jae-Sung Lim;Young Hee Jung;Juhee Chin;Yun Jeong Hong;Hyemin Jang;Hongyoon Choi;Miyoung Choi;Jae-Won Jang;Korean Dementia Association
    • Dementia and Neurocognitive Disorders
    • /
    • v.23 no.1
    • /
    • pp.54-66
    • /
    • 2024
  • Background and Purpose: Dementia subtypes, including Alzheimer's dementia (AD), dementia with Lewy bodies (DLB), and frontotemporal dementia (FTD), pose diagnostic challenges. This review examines the effectiveness of 18F-Fluorodeoxyglucose Positron Emission Tomography (18F-FDG PET) in differentiating these subtypes for precise treatment and management. Methods: A systematic review following Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines was conducted using databases like PubMed and Embase to identify studies on the diagnostic utility of 18F-FDG PET in dementia. The search included studies up to November 16, 2022, focusing on peer-reviewed journals and applying the goldstandard clinical diagnosis for dementia subtypes. Results: From 12,815 articles, 14 were selected for final analysis. For AD versus FTD, the sensitivity was 0.96 (95% confidence interval [CI], 0.88-0.98) and specificity was 0.84 (95% CI, 0.70-0.92). In the case of AD versus DLB, 18F-FDG PET showed a sensitivity of 0.93 (95% CI 0.88-0.98) and specificity of 0.92 (95% CI, 0.70-0.92). Lastly, when differentiating AD from non-AD dementias, the sensitivity was 0.86 (95% CI, 0.80-0.91) and the specificity was 0.88 (95% CI, 0.80-0.91). The studies mostly used case-control designs with visual and quantitative assessments. Conclusions: 18F-FDG PET exhibits high sensitivity and specificity in differentiating dementia subtypes, particularly AD, FTD, and DLB. This method, while not a standalone diagnostic tool, significantly enhances diagnostic accuracy in uncertain cases, complementing clinical assessments and structural imaging.