• Title/Summary/Keyword: High accuracy

Search Result 8,862, Processing Time 0.036 seconds

The method for extraction of meaningful places based on behavior information of user (실생활 정보를 이용한 사용자의 의미 있는 장소 추출 방법)

  • Lee, Seung-Hoon;Kim, Bo-Keong;Yoon, Tae-Bok;Lee, Jee-Hyong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.4
    • /
    • pp.503-508
    • /
    • 2010
  • Recently, the advance of mobile devices has made various services possible beyond simple communication. One of services is the predicting the future path of users and providing the most suitable location based service based on the prediction results. Almost of these prediction methods are based on previous path data. Thus, calculating similarities between current location information and the previous trajectories for path prediction is an important operation. The collected trajectory data have a huge amount of location information generally. These information needs the high computational cost for calculating similarities. For reducing computational cost, the meaningful location based trajectory model approaches are proposed. However, most of the previous researches are considering only the physical information such as stay time and the distance for extracting the meaningful locations. Thus, they will probably ignore the characteristics of users for meaningful location extraction. In this paper, we suggest a meaningful location extracting and trajectory simplification approach considering the stay time, distance, and additionally interaction information of user. The method collects the location information using GPS device and interaction information between the user and the others. Using these data, the proposed method defines the proximity of the people who are related with the user. The system extracts the meaningful locations based on the calculated proximities, stay time and distance. Using the selected meaningful locations the trajectories are simplified. For verifying the usability of the proposed method, we collect the behavioral data of smart phone users. Using these data, we measure the suitability of meaningful location extraction method, and the accuracy of prediction approach based on simplified trajectories. Following these result, we confirmed the usability of proposed method.

A Comparative Experiment on Dimensional Reduction Methods Applicable for Dissimilarity-Based Classifications (비유사도-기반 분류를 위한 차원 축소방법의 비교 실험)

  • Kim, Sang-Woon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.3
    • /
    • pp.59-66
    • /
    • 2016
  • This paper presents an empirical evaluation on dimensionality reduction strategies by which dissimilarity-based classifications (DBC) can be implemented efficiently. In DBC, classification is not based on feature measurements of individual objects (a set of attributes), but rather on a suitable dissimilarity measure among the individual objects (pair-wise object comparisons). One problem of DBC is the high dimensionality of the dissimilarity space when a lots of objects are treated. To address this issue, two kinds of solutions have been proposed in the literature: prototype selection (PS)-based methods and dimension reduction (DR)-based methods. In this paper, instead of utilizing the PS-based or DR-based methods, a way of performing DBC in Eigen spaces (ES) is considered and empirically compared. In ES-based DBC, classifications are performed as follows: first, a set of principal eigenvectors is extracted from the training data set using a principal component analysis; second, an Eigen space is expanded using a subset of the extracted and selected Eigen vectors; third, after measuring distances among the projected objects in the Eigen space using $l_p$-norms as the dissimilarity, classification is performed. The experimental results, which are obtained using the nearest neighbor rule with artificial and real-life benchmark data sets, demonstrate that when the dimensionality of the Eigen spaces has been selected appropriately, compared to the PS-based and DR-based methods, the performance of the ES-based DBC can be improved in terms of the classification accuracy.

Development of Vehicle Arrival Time Prediction Algorithm Based on a Demand Volume (교통수요 기반의 도착예정시간 산출 알고리즘 개발)

  • Kim, Ji-Hong;Lee, Gyeong-Sun;Kim, Yeong-Ho;Lee, Seong-Mo
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.2
    • /
    • pp.107-116
    • /
    • 2005
  • The information on travel time in providing the information of traffic to drivers is one of the most important data to control a traffic congestion efficiently. Especially, this information is the major element of route choice of drivers, and based on the premise that it has the high degree of confidence in real situation. This study developed a vehicle arrival time prediction algorithm called as "VAT-DV" for 6 corridors in total 6.1Km of "Nam-san area trffic information system" in order to give an information of congestion to drivers using VMS, ARS, and WEB. The spatial scope of this study is 2.5km~3km sections of each corridor, but there are various situations of traffic flow in a short period because they have signalized intersections in a departure point and an arrival point of each corridor, so they have almost characteristics of interrupted and uninterrupted traffic flow. The algorithm uses the information on a demand volume and a queue length. The demand volume is estimated from density of each points based on the Greenburg model, and the queue length is from the density and speed of each point. In order to settle the variation of the unit time, the result of this algorithm is strategically regulated by importing the AVI(Automatic Vehicle Identification), one of the number plate matching methods. In this study, the AVI travel time information is composed by Hybrid Model in order to use it as the basic parameter to make one travel time in a day using ILD to classify the characteristics of the traffic flow along the queue length. According to the result of this study, in congestion situation, this algorithm has about more than 84% degree of accuracy. Specially, the result of providing the information of "Nam-san area traffic information system" shows that 72.6% of drivers are available.

Economic Analysis of Typhoon Surge Floodplain that Using GIS and MD-FDA from Masan Bay, South Korea (MD-FDA와 GIS를 이용한 마산만의 태풍해일 범람구역 경제성 분석)

  • Choi, Hyun;Ahn, Chang-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.4
    • /
    • pp.724-729
    • /
    • 2008
  • In the case of 'MAEMI', the Typhoon which formed in September, 2003, the largest-scale damage of tidal wave was caused by the co-occurrence of Typhoon surge and full tide. Until now Korea has been focusing on the calculating the amount of damage and its restoration to cope with these sea and harbor disasters. It is essential to establish some systematic counterplans to diminish such damages of large-scale tidal invasion on coastal lowlands considering the recent weather conditions of growing scale of typhoons. Therefore, the purpose of this research is to make the counterplans for prevention against disasters fulfilled effectively based on the data conducted by comparing and analyzing the accuracy between observation values and the results of estimating the greatest overflow area according to abnormal tidal levels centered on Masan area where there was the severest damage from tidal wave at that time. It's necessary utilize data like high-resolution satellite image and LiDAR(etc.) for correct analysis data considering geographical characteristics of dangerous area from the storm surge. And we must make a solution to minimize the damage by making data of dangerous section of flood into GIS Database using those data (as stated above) and drawing correcter damage function.

A Pilot Study on Environmental Understanding and Estimation of the Nak-Dong River Basin Using Fuyo-1 OPS Data (Fuyo-1 OPS 자료를 이용한 낙동강 하류지역의 환경계측 시고)

  • Kim, Cheon
    • Korean Journal of Remote Sensing
    • /
    • v.12 no.2
    • /
    • pp.169-198
    • /
    • 1996
  • The objectives of this investigation are : 1. To analyze spectral signature and the associated vegetation index for geometric illumination conditions inf1uenced by low solar elevation and high slope orientations in mountainous forest. 2. To assess the accuracy of the spectral angle mapper classification for the a winter land cover in comparison with the maximum likelihood classification. 3. To produce the image of water quality and water properties that could be used to estimate the water pollution sources and the tide-included by turbid water in estuarine and coastal areas. These objectives are to characterize environmental and ecological monitoring applications of the Nak-Dong River Basin by using Fuyo-1 OPS VNIR data acquired on December 26, 1992. The results of this paper are as follows : 1. The spectral digital numbers and vegetation indexes (NDVI and TVI) of mountainous forest are higher on the slope facing the sun than on the slope hidden the sun under low sun elevation condition. 2. The spectral angle mapper algorithm produces a more accurate land cover classification of areas with steep slope, various aspects and low solar elevation than the maximum likelihood classifier. 3. The maximum likelihood classification images can be used for identifying the location and movement of both freshwater and salt water, regardless of geometric illumination conditions. 4. The color-coded density sliced image of selected water bodies by using the near-infrared band 3 can provide distribution of the water quality of the Lower Nak-Dong River. 5. The color-coded normalized difference vegetation index image of the selected mountain forest is suitable to classify winter vegetation cover types, i.e., forest canopy densities for slope orientations.

Intertidal DEM Generation Using Waterline Extracted from Remotely Sensed Data (원격탐사 자료로부터 해안선 추출에 의한 조간대 DEM 생성)

  • 류주형;조원진;원중선;이인태;전승수
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.3
    • /
    • pp.221-233
    • /
    • 2000
  • An intertidal topography is continuously changed due to morphodynamics processes. Detection and measurement of topographic change for a tidal flat is important to make an integrated coastal area management plan as well as to carry out sedimentologic study. The objective of this study is to generate intertidal DEM using leveling data and waterlines extracted from optical and microwave remotely sensed data in a relatively short period. Waterline is defined as the border line between exposed tidal flat and water body. The contour of the terrain height in tidal flat is equivalent to the waterline. One can utilize satellite images to generate intertidal DEM over large areas. Extraction of the waterline in a SAR image is a difficult task to perform partly because of the presence of speckle and partly because of similarity between the signal returned from the sea surface and that from the exposed tidal flat surface or land. Waterlines in SAR intensity and coherence map can effectively be extracted with MSP-RoA edge detector. From multiple images obtained over a range of tide elevation, it is possible to build up a set of heighted waterline within intertidal zone, and then a gridded DEM can be interpolated. We have tested the proposed method over the Gomso Bay, and succeeded in generating intertidal DEM with relatively high accuracy.

Computational study on prediction of electrical beam steering phenomenon of parametric array sound source (파라메트릭 어레이 음원의 전기적 빔 조향 현상 예측을 위한 수치 해석 기법 연구)

  • Been, Kyounghun;Ohm, Won-Suk;Moon, Wonkyu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.5
    • /
    • pp.485-493
    • /
    • 2019
  • The parametric array phenomenon refers to the generation of a high directivity low frequency wave from a small size radiation plate using the nonlinearity of the medium. In order to improve the usability of parametric array, the beam steering method of low frequency wave is researched, and the beam steering phenomenon is predicted easily using the PD (product directivity) model. However, the PD model can only be applied to Gaussian sources under quasi-linear conditions. Also, the prediction accuracy of low frequency wave beam width is poor. In this paper, a method for predicting the beam steering characteristics of a parametric array that can overcome the limitation of the PD model is investigated. For this purpose, the numerical analysis algorithm of the KZK (Khokhlov-Zabolotskaya-Kuzentsov) equation widely used for parametric array phenomenon prediction is improved. Thus, the beam steering characteristics are calculated by applying the electrical beam steering condition and comparing experimental results. As a result, the numerical analysis using the modified KZK equation algorithm in this study confirms that the beam steering phenomenon can be predicted even in a parametric array source that does not correspond to the quasi-linear condition.

A Review of Change Detection Techniques using Multi-temporal Synthetic Aperture Radar Images (다중시기 위성 레이더 영상을 활용한 변화탐지 기술 리뷰)

  • Baek, Won-Kyung;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_1
    • /
    • pp.737-750
    • /
    • 2019
  • Information of target changes in inaccessible areas is very important in terms of national security. Fast and accurate change detection of targets is very important to respond quickly. Spaceborne synthetic aperture radar can acquire images with high accuracy regardless of weather conditions and solar altitude. With the recent increase in the number of SAR satellites, it is possible to acquire images with less than one day temporal resolution for the same area. This advantage greatly increases the availability of change detection for inaccessible areas. Commonly available information in satellite SAR is amplitude and phase information, and change detection techniques have been developed based on each technology. Those are amplitude Change Detection (ACD), Coherence Change Detection (CCD). Each algorithm differs in the preprocessing process for accurate automatic classification technique according to the difference of information characteristics and the final detection result of each algorithm. Therefore, by analyzing the academic research trends for ACD and CCD, each technologies can be complemented. The goal of this paper is identifying current issues of SAR change detection techniques by collecting research papers. This study would help to find the prerequisites for SAR change detection and use it to conduct periodic detection research on inaccessible areas.

Development of Deep Learning Based Deterioration Prediction Model for the Maintenance Planning of Highway Pavement (도로포장의 유지관리 계획 수립을 위한 딥러닝 기반 열화 예측 모델 개발)

  • Lee, Yongjun;Sun, Jongwan;Lee, Minjae
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.6
    • /
    • pp.34-43
    • /
    • 2019
  • The maintenance cost for road pavement is gradually increasing due to the continuous increase in road extension as well as increase in the number of old routes that have passed the public period. As a result, there is a need for a method of minimizing costs through preventative grievance preventive maintenance requires the establishment of a strategic plan through accurate prediction of road pavement. Hence, In this study, the deep neural network(DNN) and the recurrent neural network(RNN) were used in order to develop the expressway pavement damage prediction model. A superior model among these two network models was then suggested by comparing and analyzing their performance. In order to solve the RNN's vanishing gradient problem, the LSTM (Long short-term memory) circuits which are a more complicated form of the RNN structure were used. The learning result showed that the RMSE value of the RNN-LSTM model was 0.102 which was lower than the RMSE value of the DNN model, indicating that the performance of the RNN-LSTM model was superior. In addition, high accuracy of the RNN-LSTM model was verified through the comparison between the estimated average road pavement condition and the actually measured road pavement condition of the target section over time.

Validation of an analytical method of dieckol for standardization of Ecklonia cava extract as a functional ingredient (감태추출물의 기능성원료 표준화를 위한 지표성분 dieckol의 분석법 검증)

  • Xu, Yan;Kim, Eun Suh;Lee, Ji-Soo;Kim, Gun-Hee;Lee, Hyeon Gyu
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.5
    • /
    • pp.420-424
    • /
    • 2019
  • An HPLC analysis method was developed and standardized for the detection of dieckol as a functional food ingredient in Ecklonia cava extracts. HPLC was performed using a Capcell Pak C18 column ($250{\times}4.6mm$, $5{\mu}m$) with a gradient elution of water and acetonitrile, both containing 0.1% (v/v) trifluoroacetic acid, at a flow rate of 1.0 mL/min at $25^{\circ}C$. The eluate was detected at 230 nm. For validation, the specificity, linearity, accuracy, precision, limit of detection (LOD), and limit of quantification (LOQ) of dieckol were measured. The calibration curve for the detection of dieckol had high linearity ($R^2=0.9994$), with LOD and LOQ values of 0.38 and $1.16{\mu}g/mL$, respectively. Recovery of the quantified compound ranged from 99.61 to 100.71%. The relative standard deviation values of the intra-day and inter-day precisions were less than 1.7 and 1.25%, respectively. These results indicate that the reported HPLC method is simple, reliable, and reproducible for the detection of dieckol in Ecklonia cava extracts.