• Title/Summary/Keyword: High Volume Vial

Search Result 4, Processing Time 0.019 seconds

Comparative Study of Tritium Analysis Method with High-Volume Counting Vial

  • Yoon, Yoon Yeol;Kim, Yongcheol
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.3
    • /
    • pp.142-146
    • /
    • 2020
  • Background: Tritium (3H) analysis in groundwater was difficult because of its low activity. Therefore, the electrolytic enrichment method was used. To improve the detection limit and for performing simple analysis, a high-volume counting vial with the available liquid scintillation counter (LSC) was investigated. Further, it was compared with a conventional 20-mL counting vial. Materials and Methods: The LSC with the electrolytic enrichment method was used 3H analysis in groundwater. A high-volume 145-mL counting vial was compared with a conventional 20-mL counting vial to determine the counting characteristics of different LSCs. Results and Discussion: When a Quantulus LSC was used, the counting window between channels 35 and 250 was used. The background count was approximately 1.86 cpm, and the counting efficiency increased from 8% to 40% depending on the mixing ratio of the volume of sample and cocktail solution. For LSC-LB7, the optimum counting window was between 1 and 4.9 keV, which was selected by the factory (Hitachi Aloka Medical Ltd., Japan) by considering quenching using a standard external gamma source. The background count of LSC-LB7 was approximately 3.60 ± 0.29 cpm when the 145-mL vial was used and 2.22 ± 0.17 cpm when the 20-mL vial was used. The minimum detectable activity (MDA) of the 20-mL vial was greater for LSC-LB7 than for Quantulus. The MDA with the 145-mL vial was improved to 0.3 Bq/L when compared with the value of 1.6 Bq/L for the 20-mL vial. Conclusion: The counting efficiency when using the 145-mL vial was 27%, whereas it was 18% when using the 20-mL vial. This difference can be attributed to the vial volume. The figure of merit (FOM) of the 145-mL vial was four times greater than that of the 20-mL vial because the volume of the former vial is approximately seven times greater than that of the latter. Further, the MDA for 3H decreased from 1.6 to 0.3 Bq/L. The counting efficiency and FOM of LSC-LB7 was slightly less than those of Quantulus when the 20-mL vial was used. The background counting rate of the Quantulus was lower than that of the LSC-LB7.

A Fast and Simple Synthesizing Method of $^{18}F$-Flumazenil as Derivative Benzodiazepine Receptor for Epilepsy PET Imaging (간질 PET영상을 위한 플루마제닐(벤조디아제핀 수용체)유도체의 신속하고 간단한 합성방법 소개)

  • Cho, Yong-Hyun;Kim, Hyung-Woo;Hwang, Ki-Young;Lim, Jin-Koon;Lee, Hong-Jae;Woo, Jae-Ryong;Kim, Hyun-Ju
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.12 no.3
    • /
    • pp.176-180
    • /
    • 2008
  • Department of Nuclear Medicine in Seoul National University Hospital (SNUH) had developed $^{18}F$-Flumazenil as Benzodiazepine receptor imaging agent for PET diagnosis of Epilepsy. But production Activity of $^{18}F$-Flumazenil is decreased owing to this method has difficult synthesis procedures and pretty long synthesis time. In this study, we can modify synthesizing method to have more simple procedure and less spend time and help to increase production Activity. Old method: Radioactivity was produced by cyclotron was captured by QMA cartridge that was activated. Captured radioactivity was eluted into the reaction vial by using kryptofix solution and delivered. After evaporation of eluent, the azeotrophic drying step repeated two times. tosylflumazenil in anhydrous Acetonitrile was added to a reaction vial while bubbling. The reaction mixture was evaporated until the mixture volume was 0.5 mL. Reaction vial washed with 20 % Acetonitrile and that solution went into the reaction vial. The reaction mixture was loaded to the HPLC loop by hand and purified $^{18}F$-Flumazenil by HPLC column. New method: We used $TBAHCO_3$ solution as a eluent. After the eluent was evaporated, tosylflumazenil in anhydrous acetonitrile was added to a reaction vial and the reaction mixture was bubbled for 15 minutes. It was evaporated until the mixture volume became 0.5 mL. It was loaded to the HPLC loop. In old method, $^{18}F$-Flumazenil was synthesized via 6 steps synthesis procedures in 105 minutes with 30~35% synthesizing yield (non-decay correction) and specific activity was about $0.5{\sim}2{\times}10^5$ Ci/mole. In new method, It had 3 steps synthesis procedures in 53 minutes with 40~45% synthesizing yield and specific activity was about $3{\sim}8{\times}10^5$ Ci/mole. This method leads to improve of minimizing synthesis time, increasing synthesis yield and specific activity. While we can load reaction mixture to the HPLC loop, we can expose high radiation field thanks to used by hand.

  • PDF

Evaluation of Usefulness and Procedures for Safety of Radiopharmaceuticals in Cisternography (Cisternography 검사 시 사용되는 방사성의약품의 안정성 확보를 위한 검사도입 및 유용성 평가)

  • Kim, Da-Eun;Yoo, Yeon-Wook;Choi, Ho-Yong;Kim, Yun-Cheol;Kim, Yeong-Seok;Won, Woo-Jae;Kim, Seok-Ki
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.45-49
    • /
    • 2010
  • Purpose: Several radiopharmaceuticals were used for cisternography. But recently, due to more short acquisition time, high resolution than other radiopharmaceuticals like In-111 DTPA, we were using Tc-99m DTPA in cisternography. Using of Tc-99m DTPA for intrathecal, was not officially recognised by the FDA. And there are matters of aseptic meningitis, muscular tetany, seizures by inappropriate radiopharmaceuticals handling. So, it is necessary to prevent adverse reactions while handling the radiopharmaceuticals using in cisternography. Therefore, this study aims to evaluation of usefulness and procedures for safety of radiopharmaceuticals in cisternography. Materials and Methods: Subjects were 12radioactive tracer vials using in cisternography in 2008 Dec. 16 - 2009 Dec. 30. (1) Radioactive tracer Vial test - We were measured NaPertechnetate radiation dose and volume, normal saline volume for dilution, source volume and dose activity for patient injection. And then, calculated mass of pure DTPA. (2) Bacterial endotoxin test - We performed pyrogen test using by negative/positive control vials which was added normal saline 0.2 mL and added normal saline 0.1 mL, Tc-99m DTPA 0.1 mL in test control vial. And then, reacted by digital hot plate in $37.5^{\circ}C$ for 1 hour and compared of gel-clot in each control vials. (3) Compliance safety procedure - We were checked safety issues and wrote out a safety procedure exam sheet. Results: (1) Radioactive tracer Vial test - Mass of DTPA per dose for patient injection (mg) was 0.88 (mg) on average, and Mass of DTPA per volume for patient injection (mg) was 0.74 (mg) on average. (2) Bacterial endotoxin test - All control test vials showed negative reactions. (3) Compliance safety procedure - We were checked safety issues and wrote out a safety exam sheet in all the exams. So, there were no adverse reactions. Conclusion: We could examine easier to safety tests using by Techscan - DTPA (Mallinckrodt): CaNa3. Each test results were passed the safety tests and there are no adverse reactions. The use of Tc-99m DTPA for cisternography, always has been become an issue. Since it has occur adverse reaction while examine the cisternography using by Tc-99m DTPA, it needs to set up the 'Standard Operating procedures'.

  • PDF

A Study on the Usefulness of Auto Dispenser and Optimized Dispensing Method (방사성 의약품 자동 분주장치의 유용성 및 최적화된 분주방법에 관한 고찰)

  • Lee, JeoungEun;Kim, Hosung;Ryu, Jaekwang;Jung, Wooyoung
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.17 no.2
    • /
    • pp.59-66
    • /
    • 2013
  • Purpose: Recently, there is an increase of the number of hospitals using auto dispenser to reduce occupational radiation exposure when drawing up of the $^{18}F-FDG$ dose (5.18 MBq/kg) in a syringe from the dramatic high activity of $^{18}F-FDG$ multidose vial. The aim of this study is to confirm that using auto dispenser actually reduces the radiation exposure for technologists. Also we analyzed the reproducibility of auto dispenser to find optimized dispensing method for the device. Materials and Methods: We conducted three experiments. Comparison of radiation exposure on chest and hands: The chest and hands exposure dose received by technologists during the injection were measured by electronic personal dosimeter (EPD) and ring TLD respectively. Reproducibility of dispensed volume: We draw up the normal saline into 5 and 2 mL syringe using auto dispenser by changing the volume from 1 to 15 mm for 5 times in the same setting of the volume. The weight of 5 normal saline dispensed from the device at same volume was measured using micro balance and calculated standard deviation and coefficient of variation. Reproducibility of dispensed radioactivity: We dispensed 362.6 $MBq{\pm}10%$ of $^{18}F-FDG$ in 5 and 2 mL syringes from the multidose vial of different specific activity. In the same setting of volume, we repeated dispensing for 4 times and compared standard deviation and coefficient of variation of radioactivity between 5 syringes. Results: There was significant difference in the average of chest exposure dose according to the dispensing methods (P<0.05). Also, when dispensing $^{18}F-FDG$ in manual method, exposure dose was 11.5 times higher in right hand and 4.8 times higher in left hand than in auto method. In the result of reproducibility of dispensed volume, standard deviation and coefficient of variation shows decline as the dispensing volume increases. As a result of reproducibility of dispensed radioactivity, standard deviation and coefficient of variation increases as the specific activity increases. Conclusion: We approved that the occupational radiation exposure dose of technologists were reduced when dispensing $^{18}F-FDG$ using auto dose dispenser. Secondly, using small syringes helps to increase reproducibility of auto dose dispense. And also, if you lower the specific activity of $^{18}F-FDG$ in multidose vial below 915-1,020 MBq/mL, you can use auto dispenser more effectively keeping the coefficient of variation lower than 10%.

  • PDF