• 제목/요약/키워드: High Temperature Operation Fuel Cell

검색결과 105건 처리시간 0.029초

스택온도 및 유량변화에 따른 PEMFC의 출력특성 연구 (A Study on Performance of PEMFC with Variations on Stack Temperature and Mass Flow Rate)

  • 박세준;최용성;이경섭
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.140-140
    • /
    • 2009
  • The polymer electrolyte membrane fuel cell(PEMFC) with the advantages of low-operating temperature, high current density, low cost and volume, fast start-up ability, and suitability for discontinuous operation becomes the most reasonable and attractive power system for transportation vehicle and micro-grid power plant in a household. 200W PEM-type FCs system was integrated by this study, then the electrical characteristics and diagnosis of the fuel cell were analyzed with variations on mass flow rate and stack temperature. The ranges of the variations are $20{\sim}70^{\circ}C$ on stack temperature and 1~8L/min on $H_2$ volume.

  • PDF

100℃ 이상에서 작동하는 고분자 전해질형 연료전지용 나피온/Mordenite 복합체 막의 새로운 제조 방법 (A New Preparation Method of Nafion/Mordenite Composite Membrane for Polymer Electrolyte Membrane Fuel Cell above 100℃ Operation)

  • 곽상희;양태현;김창수;윤기현
    • 한국세라믹학회지
    • /
    • 제40권2호
    • /
    • pp.159-166
    • /
    • 2003
  • 퍼플루오르설포닐 플로라이드 나피온 레진과 mordenite를 이용하여 $100^{\circ}C$ 이상의 고온에서 작동하는 고분자 전해질형 연료건지용 전해질 막을 제조하고, 물리적 특성, proton전도도 및 단위 전지의 성능을 측정하였다. 나피온/mordenite복합체 막은 나피온 레진을 용융한 후, mordenite를 무게별로 첨가하여 제조하였다. 고온 영역에서 proton 전도도를 측정한 결과, mordenite 함량이 증가할수록 층상 구조를 갖는 mordenite내에 존재하는 층간수의 느린 탈수 속도 때문에 proton 전도도는 증가하였다. 또한, 단위 전지 성능 측정 결과로부터, $130^{\circ}C$의 작동 온도에서 l0wt% mordenite를 함유하고 있는 복합체 막이 전체 영역에 걸쳐 가장 높은 성능을 보임을 알 수 있었다. 이러한 결과는 같은 조건에서. l0wt% mordenite가 함유된 복합체 막 내부에 존재하고 있는 수분이 다른 조성의 막보다 더 많이 존재하게 되어, 복합체 막의 이온 전도도를 유지하기 때문이다. 따라서, 나피온/mordenite복합체 막은 $100^{\circ}C$이상에서 작동하는 고분자 전해질형 연료전지용 전해질 막으로서 적합하다고 생각된다.

새로운 원반형 구조의 분리판을 사용한 소형 용융탄산염 스택의 운전 (Operation of A Small MCFC Stack Using New Designed Circular Separator)

  • 한종희;노길태;윤성필;남석우;임태훈;홍성안
    • 한국수소및신에너지학회논문집
    • /
    • 제14권3호
    • /
    • pp.229-235
    • /
    • 2003
  • A 50W class MCFC stack was operated in order to test a new design of the circular shaped separator. in the new design, the anode gas was supplied into the stack and was exhausted out of the stack after the anode reaction. The exhausted gas was reacted with the cathode gas supplied with excess oxygen in the vessel in which the stack was placed. Then the reacted gas flowed into the cathode side of the stack and was exhausted through the outlet located in the center of the stack. The average voltage of the single cells in the stack was 0.835V under the current density of $150mA/cm^2$, initially, and the degradation rate of the stack voltage was 1.7%/1,000h. High stack voltage with good stability of the present stack was due to the small temperature gradient in the stack. The small temperature gradient as well as the easiness of temperature control was the result of the new configuration of the separator which utilized the heat of the combustion reaction between anode outlet gas and the cathode inlet gas for heating the stack.

A Bridge Transported Bilateral Force-Reflecting Servo-Manipulator for Maintenance of Nuclear Pyroprocessing Equipment

  • Park, B.S.;Jin, J.H.;Ko, B.S.;Lee, J.K.;Yoon, J.S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2226-2230
    • /
    • 2005
  • The Advanced Spent Fuel Conditioning Process (ACP), which is a pre-disposal treatment process for spent fuel is being developed at the Korea Atomic Energy Research Institute (KAERI). The ACP equipment is operated in an intense radiation field as well as in a high temperature. Thus, the equipment is designed in consideration of the remote handling and maintenance. This paper describes a Bridge Transported Bilateral Force-Reflecting Servo-Manipulator (BTSM) system, which is being developed to overcome the limitation of access that is a drawback of the mechanical Master-Slave Manipulators (MSMs), which are mounted on the ACP hot cell wall for the operation and the maintenance of the ACP equipment. The BTSM system was manufactured and temporally installed at the mockup to test its performance. The manufactured BTSM system will be installed at the ACP hot cell on June 2005 after the accomplishment of the performance test. The BTSM system consists of four components: a transporter with a telescoping tubeset, a slave manipulator, a master manipulator, and a remote control system. This system will highly increase the volume of coverage for the operation and maintenance of the ACP equipment.

  • PDF

Characteristics of DMFC Using High Porous Active Carbon as an Uncatalysed Diffusion Layer in Anode Electrode

  • Jung, Doo-Hwan;Shin, Dong-Ryul
    • Carbon letters
    • /
    • 제1권1호
    • /
    • pp.27-30
    • /
    • 2000
  • Performance of direct methanol fuel cell using high porous active carbon as an uncatalysed diffusion layer in anode (composite electrode) has been evaluated. Effects of porous active carbon in anode were investigated by galvanostatic method and Fourier Transform Infrared spectroscopy. The single cell was operated with 2.5 M methanol at temperature of $80-120^{\circ}C$ and showed performance of $210-510\;mA/cm^2$ at 0.4V. By replacing conventional electrode with composite electrode, the increment of $290\;mA/cm^2$ in current density was obtained at $90^{\circ}C$and 0.4V. The potential decay of the single cell was about 14.5% for 20 days operation.

  • PDF

디젤 자열개질 가스 내 포함된 $C_2H_4$ 제거를 위한 후개질기 촉매 활성 실험 (Activity test of post-reforming catalyst for removing the ethylene in diesel ATR reformate)

  • 윤상호;배중면;이상호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.218-221
    • /
    • 2009
  • Solid oxide fuel cells (SOFCs), as high-temperature fuel cells, have various advantages. In some merits of SOFCs, high temperature operation can lead to the capability for internal reforming, providing fuel flexibility. SOFCs can directly use CH4 and CO as fuels with sufficient steam feeds. However, hydrocarbons heavier than CH4, such as ethylene, ethane, and propane, induce carbon deposition on the Ni-based anodes of SOFCs. In the case of the ethylene steam reforming reaction on a Ni-based catalyst, the rate of carbon deposition is faster than among other hydrocarbons, even aromatics. In the reformates of heavy hydrocarbons (diesel, gasoline, kerosene and JP-8), the concentration of ethylene is usually higher than other low hydrocarbons such as methane, propane and butane. It is importatnt that ethylene in the reformate is removed for stlable operation of SOFCs. A new methodology, termed post-reforming was introduced for removing low hydrocarbons from the reformate gas stream. In this work, activity tests of some post-reforming catalysts, such as CGO-Ru, CGO-Ni, and CGO-Pt, are investigated. CGO-Pt catalyst is not good for removing ethylene due to low conversion of ethylene and low selectivity of ethylene dehydrogenation. The other hand, CGO-Ru and CGO-Ni catalysts show good ethylene conversion, and CGO-Ni catalyst shows the best reaction selectivity of ethylene dehydrogenation.

  • PDF

사용후 핵연료 차세대관리공정 원격 운전/유지보수용 천정이동 서보 매니퓰레이터 시스템 개발 (Development of a Bridge Transported Servo Manipulator System for the Remote Operation and Maintenance of Advanced Spent Fuel Conditioning Process)

  • 박병석;이종광;이효직;최창환;윤광호;윤지섭
    • 제어로봇시스템학회논문지
    • /
    • 제13권10호
    • /
    • pp.940-948
    • /
    • 2007
  • The Advanced Spent Fuel Conditioning Process(ACP), which is the process of the reduction of uranium oxide by lithium metal in a high temperature molten salt bath for spent fuel, was developed at Korea Atomic Energy Research Institute (KAERI). Since the ACP equipment is located in an intense radiation field (hot cell) as well as in a high temperature, it must be remotely operated and maintained. The ACP hot cell is very narrow so the workspace of the wall-mounted mechanical Master-Slave Manipulators(MSMs) is restricted. A Bridge Transported Servo Manipulator(BTSM) system has been developed to overcome the limitation of an access that is a drawback of the mechanical MSMs. The BTSM system consists ot a bridge crane with telescoping tubeset, a slave manipulator, a master manipulator, and a control system. We applied a bilateral position-position control scheme with friction compensation as force-reflecting controller. In this paper, the transmission characteristics on the tendon-and-pulley train is numerically formulated and analyzed. Also, we evaluate the performance of the force-reflecting servo manipulator.

연료전지 항공기를 위한 고체상태 NaBH4의 수소발생 및 연료전지 구동 특성 (Characteristic of Hydrogen Generation from Solid-State NaBH4 and Fuel Cell Operation for Fuel Cell Aircraft)

  • 이충준;김태규
    • 한국항공우주학회지
    • /
    • 제39권9호
    • /
    • pp.858-865
    • /
    • 2011
  • 본 논문은 연료전지 항공기를 위한 고체상태 $NaBH_4$의 수소발생 및 연료전지 구동 특성에 대해서 기술하고 있다. 수소 저장밀도를 높이기 위해서 고체상태 $NaBH_4$와 염산을 반응시켜 수소를 발생시키는 방법을 사용하였다. 다양한 반응 조건에서 고체상태 $NaBH_4$의 수소 발생률을 측정하였다. 고체 $NaBH_4$의 수소 발생률은 염산의 주입속도와 농도에 영향을 받지만, 환경온도에 영향을 받지 않는 것을 확인하였다. 연료전지를 고체 $NaBH_4$ 수소 발생기에 연결하였다. 전기적 부하가 서서히 혹은 급격히 증가하여도 안정적인 출력을 유지하는 것을 확인하였다.

유로형상 및 운전조건에 따른 고분자 전해질 연료전지의 성능 특성 (Performance Characteristics of PEMFC by flow Configurations and Operating Condition)

  • 이필형;조선아;한상석;황상순
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3440-3445
    • /
    • 2007
  • For proton exchange membrane fuel cell, it is very important to design the flow channel on separation plate optimally to maximize the current density at same electrochemical reaction surface and reduce the concentration polarization occurred at high current density. In this paper, three dimensional computation model including anode and cathode domain together was developed to examine effects of flow patterns and operation conditions such as humidity and operating temperature on performance of fuel cell. Results show that voltage at counter flow condition is higher than that at coflow condition in parallel and interdigitated flow pattern. And fuel cell with interdigitated flow pattern which has better mass transport by convection flow through gas diffusion layer has higher performance than with parallel flow pattern but its pressure drop is increased such that the trade off between performance and pressure drop should be considered for selection of flow pattern of fuel cell.

  • PDF

전산해석을 통한 고분자 전해질 연료전지 내 입구 가습조건의 영향에 관한 연구 (Numerical Study for the Effect of Inlet Humidity Condition at PEMFC Channel)

  • 이동율;;배중면
    • 대한기계학회논문집B
    • /
    • 제30권12호
    • /
    • pp.1228-1235
    • /
    • 2006
  • PEMFC(Proton Exchange Membrane Fuel Cell) is a low temperature fuel cell and has many probabilities of commercial use. However, water management is one of the serious technical problems for commercialization. It is necessary to understand the relationship between operation conditions and water behavior in PEMFC channel because it affects fuel cell performance. In this paper, the distribution of current density according to inlet humidity condition is mainly observed and discussed. If the anode inlet is well humidified, electro-osmotic drag is very active. For this reason, current density is very high at inlet side and the distribution is non-uniform.