• 제목/요약/키워드: High Temperature Fuel Injection

검색결과 201건 처리시간 0.031초

다단분사를 적용한 바이오디젤 연료의 분무 미립화 특성 (Spray-atomization Characteristics of Biodiesel Fuel with Multiple Injection)

  • 박수한;김형준;김세훈;이창식
    • 한국자동차공학회논문집
    • /
    • 제18권4호
    • /
    • pp.40-47
    • /
    • 2010
  • This study deals with the investigation about the effect of the pilot and split injection strategies on the spray-atomization characteristics of biodiesel fuel derived from a soybean oil. Experimental results were compared with the calculation results obtained from the numerical analysis. Fuel properties of biodiesel according to the variation of the fuel temperature were inserted to the fuel library in the KIVA code. The amount of fuel injection is divided into equal mass for each split and main injection. In this work, the pilot injection strategy can be achieved by the amount of fuel injection shortly before the start of the main injection. A spray tip penetration, radial distance and spray area were measured for the analysis of macroscopic spray characteristics. In addition, the local and overall droplet size distribution were calculated by using KIVA-3V code to study the effect of split and pilot injection on the atomization performance under high ambient pressure. From these studies, the experimental results showed the multiple injection induced the decrease of the spray tip penetration due to the reduction and division of the spray momentum compared to single injection. In the atomization performance, the droplet size increased in the case of the multiple injection a little. Moreover, the SMD slightly increased as the fuel droplets goes through the axial direction. The spray behavior of numerical results were well predicted the experimental multiple spray characteristics of biodiesel fuel.

An Analysis on Structure of Impinging and Free Diesel Spray with Exciplex Fluorescence Method in High Temperature and Pressure Field

  • Yeom, Jeong-Kuk;Park, Jong-Sang;Chung, Sung-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제19권12호
    • /
    • pp.2281-2288
    • /
    • 2005
  • Because an injected spray development process consists of impinging and free spray in the diesel engine, it is needed to analyze the impinging spray and free spray, simultaneously, in order to study the diesel spray behavior. To dominate combustion characteristics in diesel engine is interaction between injected fuel and ambient gas, that is, process of mixture formation. Also it is very important to analyze liquid and vapor phases of injected fuel on the investigation of mixing process, respectively and simultaneously. Therefore, in this study, the behavior characteristics of the liquid phase and the vapor phase of diesel spray was studied by using exciplex fluorescence method in high temperature and injection pressure field. Finally, it can be confirmed that the distribution of vapor concentration is more uniform in the case of the high injection than in that of the low injection pressure.

극초고압 디젤분무의 충돌면 온도거동에 관한 연구 (A Study on the Temperature Behavior on Impinging Plate of Diesel Spray with Ultra High Pressure)

  • 이종태;정대용
    • 대한기계학회논문집B
    • /
    • 제29권3호
    • /
    • pp.402-408
    • /
    • 2005
  • The instantaneous temperature behaviors on impinging plate in case of ultra high pressure have been measured and analyzed by using the instantaneous temperature probe and ultra high pressure injection equipment. The temperature drop was largest at P1 which is center of impinging spray and decreased with propagation of spray to the radius direction. The temperature drop was bigger in case of higher temperature of impinging plate. The temperature drop decreased with increase of injection pressure. But decreasing rate of temperature drop was slight over 2,500 bars. Therefore, it was predicted that the fuel evaporation versus the increase of injection pressure was maximum at around 2,500 bars.

증발 조건에서 초고압 분사와 노즐 홀 직경이 디젤 유량 및 분무 특성에 미치는 영향에 대한 연구 (Influence of Ultra-high Injection Pressure and Nozzle Hole Diameter on Diesel Flow and Spray Characteristics under Evaporating Condition)

  • 조원규;박영수;배충식;유준;김영호
    • 한국분무공학회지
    • /
    • 제20권1호
    • /
    • pp.43-52
    • /
    • 2015
  • Experimental study was conducted to investigate the effects of ultra-high injection pressure and nozzle hole diameter on diesel flow and spray characteristics. Electronically controlled ultra-high pressure fuel injection system was made to supply the fuel of ultra-high pressure consistently. Three injection pressures, 80, 160, and 250MPa were applied. Four type of injectors with identical eight nozzle holes were used. The four injectors have nozzle hole diameters of 115, 105, 95, and $85{\mu}m$ respectively. Injection quantity and rate were measured to investigate flow characteristics according to injection pressures and nozzle hole diameters. Mie-scattering and shadowgraph were performed to visualize liquid and vapor phases of diesel spray in a constant volume combustion chamber (CVCC). Ambient conditions of high pressure and high temperature in a diesel engine were simulated by using CVCC.

분사각 및 분공 직경이 예혼합 압축착화 엔진 연소에 미치는 영향 (The Effect of Injection Angle and Nozzle Diameter on HCCI Combustion)

  • 국상훈;공장식;박세익;배충식;김장헌
    • 한국자동차공학회논문집
    • /
    • 제15권2호
    • /
    • pp.1-7
    • /
    • 2007
  • The effect of injector geometries including the injection angle and number of nozzle holes on homogeneous charge compression ignition (HCCI) engine combustion has been investigated in an automotive-size single-cylinder diesel engine. The HCCI engine has advantages of simultaneous reduction of PM and NOx emissions by achieving the spatially homogenous distribution of diesel fuel and air mixture, which results in no fuel-rich zones and low combustion temperature. To make homogeneous mixture in a direct-injection diesel engine, the fuel is injected at early timing. The early injection guarantees long ignition delay period resulting in long mixing period to form a homogeneous mixture. The wall-impingement of the diesel spray is a serious problem in this type of application. The impingement occurs due to the low in-cylinder density and temperature as the spray penetrates too deep into the combustion chamber. A hole-type injector (5 holes) with smaller angle ($100^{\circ}$) than the conventional one ($150^{\circ}$) was applied to resolve this problem. The multi-hole injector (14 holes) was also tested to maximize the atomization of diesel fuel. The macroscopic spray structure was visualized in a spray chamber, and the spray penetration was analyzed. Moreover, the effect of injector geometries on the power output and exhaust gases was tested in a single-cylinder diesel engine. Results showed that the small injection angle minimizes the wall-impingement of diesel fuel that results in high power output and low PM emission. The multi-hole injector could not decrease the spray penetration at low in-cylinder pressure and temperature, but still showed the advantages in atomization and premixing.

다른 구동방식을 갖는 고압 디젤 엔진용 인젝터의 Pilot 분무 특성 해석 (Analysis of Pilot Spray Characteristics of Different Driven Injectors for High Pressure Diesel Engine)

  • 배장웅;김하늘;이진욱;강건용;류정인
    • 한국연소학회:학술대회논문집
    • /
    • 대한연소학회 2003년도 제27회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.251-256
    • /
    • 2003
  • The capability of pilot injection with small fuel quantity at all engine operating conditions is one of the main feature of the common rail system. The purpose of the pilot injection is to lower the engine noise and to reduce the NOx emissions. This study describes the pilot spray structure characteristics of the common-rail diesel injectors, solenoid-driven and piezo-driven type, with different electric driving characteristics So, three common-rail injectors with different electric current wave were used in this study. The pilot spray characteristics such as spray speed, spray tip penetration, and spray angle were obtained by spray images, which is measured by the back diffusion light illumination method with optical system for high-speed temporal photography. Also the CFD analysis was carried out for fuel behavior under high pressure in between needle and nozzle of solenoid-driven injector to know the condition of initial injection at experiment test. It was found that pilot injection of common-rail system was effected by rate of injection and temperature of injected fuel and electrical characteristic of the driven injector.

  • PDF

액상분사식 LPG 인젝터의 아이싱 생성 특성 및 억제 방법 (Icing Characteristics in Liquid-Phase Injection of LPG Fuel)

  • 이선엽;김창업;최교남;강건용
    • 한국분무공학회지
    • /
    • 제14권4호
    • /
    • pp.147-152
    • /
    • 2009
  • Since a liquid-phase LPG injection system allows accurate control of fuel injection and increase in volumetric efficiency, it has advantages in achieving higher engine power and lower emissions compared to the mixer type LPG supplying system. However, this system also leads to an unexpected event called icing phenomenon which occurs when moisture in the air near the injector freezes and becomes frost around the nozzle hole due to extraction of heat from surrounding caused by instant fuel vaporization. As a result, it becomes difficult to control air/fuel ratio in engine operation, inducing exacerbation of engine performance and HC emission. One effort to mitigate icing phenomenon is to attach anti-icing injection tip in the end of nozzle. Therefore, in this study, the effect of engine operation parameters as well as surrounding conditions on icing phenomenon was investigated in a bench test rig with commercially-used anti-icing injection tips. The test results show that considerable ice was deposited on the surface near the nozzle hole of the anti-icing tip in low rpm and low load operating conditions in ambient air condition. This is because acceleration of detachment of deposited ice from the tip surface was induced in high load, high rpm conditions, resulting in decrease in frost accumulation. The results of the bench testing also demonstrate that little or no ice was formed at surrounding temperature below a freezing point since the absolute amount of moisture contained in the intake air is too small in such a low temperature.

  • PDF

RCM을 이용한 디젤 분무 거동 및 자발화 특성에 관한 실험적 연구 (An Experimental Study on Diesel Spray Dynamics and Auto-Ignition Characteristics to use Rapid Comperssion Machine)

  • 안재현;김형모;신명철;김세원
    • 한국분무공학회지
    • /
    • 제8권3호
    • /
    • pp.33-40
    • /
    • 2003
  • The low-emission and high-performance diesel combustion is an important issue in the combustion research community, In order to understand the detailed diesel flame involving the complex physical processes, it is quite desirable to diesel spray dynamics, auto-ignition and spray flame propagation. Dynamics of fuel spray is a crucial element for air-fuel mixture formation, flame stabilization and pollutant formation, In the present study, the diesel RCM (Rapid Compression Machine) and the Electric Control injection system have been designed and developed to investigate the effects of injection pressure, injection timing, and intake air temperature on spray dynamics and diesel combustion processes, In terms of the macroscopic spray combustion characteristics, it is observed that the fuel jet atomization and the droplet breakup processes become much faster by increasing the injection pressure and the spray angle, With increasing the cylinder pressure, there is a tendency that the of spray pattern in the downstream region tends to be spherical due to the increase of air density and the corresponding drag force, Effects of intake temperature and injection pressure on auto-ignition is experimently analysed and discussed in detail.

  • PDF

RCM을 이용한 디젤 분무거동 및 자발화 특성에 관한 연구 (An Experimental Study on Diesel Spray Dynamics and Auto-Ignition Characteristics in the Rapid Compression Machine)

  • 강필중;김형모;김용모;김세원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.447-452
    • /
    • 2000
  • The low-emission and high-performance diesel combustion is an important issue in the combustion research community. In order to understand the detailed diesel flame field involving the complex Physical Processes, It Is quite desirable to study diesel spray dynamics, auto-ignition and spray flame propagation. Dynamics of fuel spray is a crucial element for air-fuel mixture formation flame stabilization and pollutant formation. In the present study, the diesel RCM (Rapid Compression Machine) and the Electric Control injection system have been designed and developed to investigate the effects of injection Pressure, injection timing, and intake air temperature on spray dynamics and diesel combustion processes. In terms of the macroscopic spray combustion characteristics it is observed that the fuel jet atomization and the droplet breakup processes become much faster by increasing the injection pressure and the spray angle. With increasing the cylinder pressure there is a tendency that the shape of spray pattern in the downstream region tends to be spherical due to the increase of air density and the corresponding drag force. Effects of intake temperature and injection pressure on auto-ignition is experimently analysed and discussed in detail.

  • PDF

유화연료의 분사압력이 연소특성에 미치는 영향 (Effect of Injection Pressure of Water-in-Oil Emulsified Fuel on the Combustion Characteristics)

  • 황상호;배회화;김덕줄
    • 한국분무공학회지
    • /
    • 제8권2호
    • /
    • pp.38-45
    • /
    • 2003
  • This study was carried on the combustion characteristics of a pure light oil and emulsified fuels at high-pressure injection in a spray combustion installation, The volume fractions of water in an emulsion were varied up to 30% and the injection pressures were 7.5, 100, 200, and $300kg_f/cm^2$. The concentrations of NOx and the average temperatures of flame were measured. And Images of OH radical using ICCD camera and instantaneous schlieren photography of flames were photographed. It was found that the temperature distribution of axial distance in the emulsified fuels was increased in the upstream and decreased in the down stream. The temperature distribution of radial distance was high at the peripheral regions of the spray in the upstream and at the central regions of spray in the downstream, The intensity of OH radical was denser at the water content 10% than at the pure light oil over the injection pressure $200kg_f/cm^2$.

  • PDF