• Title/Summary/Keyword: High Temperature Filter

Search Result 377, Processing Time 0.027 seconds

Radiant Energy Filtering to Enhance High Temperature Measurement by a Thermography System (고온 계측 열화상 시스템 구현을 위한 복사에너지 필터링 연구)

  • Yoon, Seok Tae;Cho, Yong Jin;Jung, Ho Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.6
    • /
    • pp.466-473
    • /
    • 2016
  • In a shipbuilding process, thermal damage to the ship structure at the rear end results from an excessive heat input and conduction during welding process. To prevent such damage, appropriate control of the heat input, based on welding temperature measurement, is required. For temperature measurement, contact and non-contact methods are available; the thermography system is a popular non-contact temperature measurement. When the intensity of radiation from a high-temperature object is excessive, however, detecting the sensors of ordinary thermography systems leads to an inability in measuring the temperature due to saturation. Hence, this study suggests use of a neutral density filter that prevents an excessive amount of radiation from being accumulated in a thermography system, and thus makes it possible to quantitatively measure an object's temperature as high as $3000^{\circ}C$.

The Effect of $MnO_2$ Addition on the $V_2O_5/TiO_2$ Catalytic Filters for NO Reduction (NO 환원반응을 위한 $V_2O_5/TiO_2$계 촉매필터의 $MnO_2$ 조촉매 효과)

  • Shin, Hae-Joong;Choi, Jae-Ho;Song, Young-Hwan;Lee, Ju-Young;Jang, Sung-Cheol;Choi, Joo-Hong
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.363-368
    • /
    • 2008
  • Nitrogen oxides (NO, $NO_2$ and $N_2O$) have been controlled effectively by the SCR catalysts coated on monolith or honeycomb in commercial sites with ammonia as reductant at high temperature range $300{\sim}400^{\circ}C$. However, the catalytic filter has much merit on the point of controlling the particles and nitrogen oxides simultaneously. It will be more advanced-system if the catalytic working temperature is reduced to the normal filtration temperature of under $200^{\circ}C$. This study has focus on the development of the catalytic filter working at the low temperature. So the additive effect of the components such as Pt and Mn (which are known the catalytic component of $V_2O_5/TiO_2$ was investigated. The $V_2O_5-WO_3$ catalytic filter exhibited high activity and selectivity at $250{\sim}320^{\circ}C$ showing more than 95% NO conversion for the treatment of 600 ppm NO at face velocity 2 cm/s. The Pt-$V_2O_5-WO_3$ catalytic filter shifted the optimum working temperature towards the lower temperature ($170{\sim}200^{\circ}C$). And NO conversion was 100% and higher than that of $V_2O_5-WO_3$ catalyst at $250{\sim}320^{\circ}C$. The $MnO_X-V_2O_5-WO_3$ catalytic filter showed the wide temperature range of $220{\sim}330^{\circ}C$ for more than 95% NO conversion. This is a remarkable advantage when considered the $MnO_X$ catalytic filter presents the maximum activity at $150{\sim}250^{\circ}C$ and $V_2O_5-WO_3$ catalytic filter shows the maximum activity at $250{\sim}320^{\circ}C$.

  • PDF

A fully coupled thermo-poroelastoplasticity analysis of wellbore stability

  • Zhu, Xiaohua;Liu, Weiji;Zheng, Hualin
    • Geomechanics and Engineering
    • /
    • v.10 no.4
    • /
    • pp.437-454
    • /
    • 2016
  • Wellbore instability problem is one of the main problems that met frequently during drilling, particularly in high temperature, high pressure (HPHT) formations. There are large amount of researches about wellbore stability in HPHT formations, which based on the thermo-poroelastic theory and some achievements were obtained; however, few studies have investigated on the fully coupled thermo-poroelastoplasticity analysis of wellbore stability, especially the analysis of wellbore stability while the filter cake formed. Therefore, it is very necessary to do some work. In this paper, the three-dimensional wellbore stability model which overall considering the effects of fully coupled thermo-poroelastoplasticity and filter cake is established based on the finite element method and Drucker-Prager failure criterion. The distribution of pore pressure, wellbore stress and plastic deformation under the conditions of different mud pressures, times and temperatures have been discussed. The results obtained in this paper can offer a great help on understanding the distribution of pore pressure and wellbore stress of wellbore in the HPHT formation for drilling engineers.

Microwave Dielectric Properties of Ti-Te system Ceramics for Triplexer Filter

  • Choi, Eui-Sun;Lee, Moon-Woo;Lee, Sang-Hyun;Kang, Gu-Hong;Kang, Gap-Sul;Lee, Young-Hie
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.263-269
    • /
    • 2011
  • In this study, the compositions for the microwave dielectric materials were investigated to obtain the improved dielectric properties, the high temperature stability, and the sintering temperature of less than $900^{\circ}C$, which was necessary for cofiring with the internal conductor of silver. In addition, the dielectric sheets were prepared by the tape casting technique, after which the sheets were laminated and sintered. In this process, the optimum ratio of powder and binder, laminating pressure, temperature, and possibility for cofiring with the internal conductor were studied. Finally, multilayer chip treplexer filter for the 800-2,000 MHz range were fabricated, and the frequency characteristics of the triplexer filter were investigated. When the $0.6TiTe_3O_8-0.4MgTiO_3+3wt%SnO+7wt%H_3BO_3$ ceramics were sintered at $820^{\circ}C$ for 0.3 hours, the microwave dielectric properties of the dielectric constant of 29.91, quality factor of 33,000 GHz, and temperature coefficient of resonant frequency of -2.76 ppm/$^{\circ}C$ were obtained. Using the Advanced Design System (ADS) and High Frequency Structure Simulator (HFSS), the multilayer chip triplexer filter acting at the range of 800-2,000 MHz were simulated and manufactured. The manufactured triplexer filter had the excellent frequency properties in the CDAM800, GPS and PCS frequency regions, respectively.

A study of improving filtration efficiency through SiC whisker synthesis on carbon felt by CVD VS method

  • Kim, Gwang-Ju;Choe, Du-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.150-150
    • /
    • 2016
  • Mankind is enjoying a great convenience of their life by the rapid growth of secondary industry since the Industrial Revolution and it is possible due to the invention of huge power such as engine. The automobile which plays the important role of industrial development and human movement is powered by the Engine Module, and especially Diesel engine is widely used because of mechanical durability and energy efficiency. The main work mechanism of the Diesel engine is composed of inhalation of the organic material (coal, oil, etc.), combustion, explosion and exhaust Cycle process then the carbon compound emissions during the last exhaust process are essential which is known as the major causes of air pollution issues in recent years. In particular, COx, called carbon oxide compound which is composed of a very small size of the particles from several ten to hundred nano meter and they exist as a suspension in the atmosphere. These Diesel particles can be accumulated at the respiratory organs and cause many serious diseases. In order to compensate for the weak point of such a Diesel Engine, the DPF(Diesel Particulate Filter) post-cleaning equipment has been used and it mainly consists of ceramic materials(SiC, Cordierite etc) because of the necessity for the engine system durability on the exposure of high temperature, high pressure and chemical harsh environmental. Ceramic Material filter, but it remains a lot of problems yet, such as limitations of collecting very small particles below micro size, high cost due to difficulties of manufacturing process and low fuel consumption efficiency due to back pressure increase by the small pore structure. This study is to test the possibility of new structure by direct infiltration of SiC Whisker on Carbon felt as the next generation filter and this new filter is expected to improve the above various problems of the Ceramic DPF currently in use and reduction of the cost simultaneously. In this experiment, non-catalytic VS CVD (Vapor-Solid Chemical Vaporized Deposition) system was adopted to keep high mechanical properties of SiC and MTS (Methyl-Trichloro-Silane) gas used as source and H2 gas used as dilute gas. From this, the suitable whisker growth for high performance filter was observed depending on each deposition conditions change (input gas ratio, temperature, mass flow rate etc.).

  • PDF

Computational Simulation by One-Dimensional Regeneration Model of Wall-Flow Monolith Diesel Particulate Filter Trap (벽-유동(Wall-Flow) 모노리스(Monolith) 디젤 입자상물질 필터 트랩의 재생모델에 의한 수치 시뮬레이션)

  • Kim, G.H.;Park, J.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.41-54
    • /
    • 1995
  • A mathematical model for wall-flow monolith ceramic diesel particulate filter was developed in order to describe the processes which take place in the filter during regeneration. The major output of the model comprises ceramic wall temperature and regeneration time(soot reduction). Various numerical tests were performed to demonstrate how the gas oxygen concentration, flow rate and the initial particulate trap loading affect the regeneration time and peak trap temperature. The model is shown to b in reasonable agreement with the published experimental results. This model can be applied to predict the thermal shock failure due to high temperature during combustion regeneration process.

  • PDF

A Design of High Temperature Superconducting Low-Pass Filter for Broad-Band Harmonic Rejection (광대역 고조파 제거용 고온초전도 저역통과 필터의 설계)

  • Kwak, Min-Hwan;Kim, Sang-Hyun;Ahn, Dal;Han, Seok-Kil;Kang, Kwang-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.78-81
    • /
    • 2000
  • A new type low-pass filter design method based on a coupled line and transmission line theory is proposed to suppress harmonics by attenuation poles in the stop band The design formula are derived using the equivalent circuit of a coupled transmission line. The new low-pass filter structure is shown to have attractive properties such as compact size, wide stop band range and low insertion loss. The seventh-order low-pass filter designed by present method Ins a cutoff frequency of 0.9 GHz with a 0.01 dB ripple level. The coupled line type low-pass filter with stripline configuration was fabricated by using a high-temperature superconducting (HTS ; $YBa_2Cu_3O_{7-x}$) thin film on MgO(100) substrate. Since the HTS coupled line type low-pass filter was proposed with five attenuation poles in stop band such as 1.8, 2.5, 4, 5.5, 62 GHz. The fabricated low-pass filter has improved the attenuation characteristics up to seven times of the cutoff frequency Bemuse of good rejection of the spurious signals and harmonics, our low-pass filter is applicable to mobile base station systems such as cellular, personal communication systems and international mobile telecommunication(IMT)-2000 systems.

  • PDF

A Study on the Performance of Pulse Jet Cleaning in High Temperature Filter (고온 세라믹필터의 펄스젯 탈진 성능에 관한 연구)

  • Kim Byong Ryol;Park Seung Chul;Park Byoung Chul;Cho Hynu Joon;Oh Hyoung Mo;Hwang Tae Won;Shin Sang Woon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.1
    • /
    • pp.9-16
    • /
    • 2005
  • To evaluate parameters influencing on the dust removal of the High Temperature Filter(HTF) system, a computer simulation of fluid dynamics inside the system had been performed. The results showed that the optimum pulse jet periods were 50ms and 90ms for the 1000mm and 1500mm long filter elements respectively. Dust removal effect was very excellent under the pulse jet pressure of 3 bar. But the distance between the pulse jet nozzle and the venturi of a filter element had no meaningful effect on the performance with the variation from 5mm to 10mm. Compared to the dispersion mode of pulse jet, the collective mode of pulse jet flow was preferable in maintaining the pressure inside the system stable.

  • PDF

Growth of high-$T_{c}$ Superconducting Multilayer thin films and Fabrication of Microwave Filter (고온초전도 다층박막의 성장과 마이크로파 필터의 개발)

  • 강광용;김철수;곽민환
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.287-290
    • /
    • 2003
  • For microwave device applications, c-axis oriented high temperature superconducting YBa$_2$Cu$_3$O$_{7-{\delta}}$ (HTS-YBCO) epitaxial thin films on the r-cut sapphire substrate(Al$_2$O$_3$) were prepared. In order to reduce the lattice mismatch with a substrate and to enhance the crystallity of HTS thin films, CeO$_2$ buffer layer on the r-cut sapphire substrate was grown by the RF-magnetron sputtering. The YBCO films on the CeO$_2$ buffer layer were deposited using the pulsed-laser deposition (PLD) method. These HTS YBCO /CeO$_2$/Al$_2$O$_3$ multilayer thin films(30 $\times$ 30 mm$^2$) routinely exhibited a critical temperature(T$_{c}$) of 89 K from the R-T measurement. Using HTS YBCO/CeO$_2$ /Al$_2$O$_3$ multilayer thin film. We fabricated and characterized the microwave passive devices (planar type filters) with cryopack-age such as the coupled -line type low-pass filter (LPF) and the open-loop meander type bandpass filter (BPF).filter (BPF).).

  • PDF