• 제목/요약/키워드: High Temperature Fatigue Life

검색결과 147건 처리시간 0.029초

무한 평면체에 존재하는 복수 표면균열의 성장에 대한 수명예측용 시뮬레이션 개발에 관한 연구 (A Program Development of Life Prediction Simulation for Multi-Surface Cracks on the Finite Plate)

  • 황남성;서창민;남승훈
    • 한국해양공학회지
    • /
    • 제11권4호
    • /
    • pp.61-75
    • /
    • 1997
  • The social demand urges us to use some equipments and structures in high temperature environment. By this occasion, the necessity of studying the fatigue crack growth is an important aspect of new materials. However, the present situation is rarely to accumulate the fatigue data. Especially, 1Cr-1Mo-0.25V steel and 304 stainless steel have been increased to be used under the severe condition of high temperature. And so, the fatigue estimation of those materials is important and appropriate. Fatigue tests have been carried out to examine the crack initiation, growth behaviour for the small fatigue crack of 1Cr-1Mo-0.25V steel and 304 stainless steel at room temperature and 538^{\circ}C$. The remote measurement system which has many merits of checking and saving the image for detailed examination was applied to closely detect the crack length. Generally, the fatigue crack initiated in the form of multiple cracks and grew each other. And then it coalesced to become a major crack. The major crack governed the rest of the fatigue life. In the growing process, each peripheral cracks interact and grow for a certain period. After then, it coalesced and fractured. On the basis of the above experimental data for the small crack, a simulation program was developed to predict the residual life time and to estimate the integrity of machine elements and structures. At the same time, the simulation was extended to 1Cr-1Mo-0.25V steel. The simulation results have shown a good agreement to those of the experimental ones for both materials of 1Cr-1Mo-0.25V steel and 304 stainless steel with small cracks. The NASCRAC has applied to compare the fatigue life with the experimental results. And so, it can be said that the simulation program is valuable tools to the industrial fields.

  • PDF

고탄소 크롬 베어링 강에서의 잔류 오스테나이트 변화에 따른 회전접촉 피로거동 (A Behavior of Rolling Contact Fatigue on Retained Austenite in High-Carbon Chromium Bearing Steel)

  • 진재관;김동건
    • 열처리공학회지
    • /
    • 제7권3호
    • /
    • pp.190-198
    • /
    • 1994
  • In order to study the effect of retained austenite on rolling contact fatigue in high-carbon chromium bearing steel, retained austenite was controlled by only tempering temperature, individually 200, 220 and $240^{\circ}C$. Among various microstructural alteration during rolling contact fatigue test, plate-like carbide most related to the flaking at sub-surface of contact pressure. The plate-like carbides formed during rolling contact fatigue test decrease with increasing tempering temperature, and fatigue life is much more improved. The retained austenite was decreased with the tempering temperature, and that decreased plate-like carbide formation. Therefore fatigue life is much more improved with decreasing retained austenite.

  • PDF

12 Cr 강의 열피로 수명단축에 관한 연구 (A study on the thermal-mechanical fatigue life prediction of 12 Cr steel)

  • 하정수;김건영;안희돈
    • 한국정밀공학회지
    • /
    • 제11권4호
    • /
    • pp.114-125
    • /
    • 1994
  • Fatigue behavior and life prediction method were presented for themal-mechanical and isothermal low cycle fatigue of 12 Cr forged steel used for high temperature applications. In-phase and out-of-phase thermal-mechanical fatigue test from 350 .deg. C to 600 .deg. C and isothermal low cycle fatigue test at 600 .deg. C, 475 .deg. C, 350 .deg. C were conducted using smooth cylindrical hollow specimen under strain-control with total strain ranges from 0.006 to 0.015. The phase difference between temperature and strain in thermal-mechanical fatigue resulted in significantly shorter fatigue life for out-of-phase than for in-phase. Thermal-mechanical fatigue life predication was made by partitioning the strain ranges of the hysteresis loops and the results of isothermal low cycle fatigue tests which were performed under the combination of slow and fast strain rates. Predicted fatigue lives for out-of-phase using the strain range partitioning method showed an excellent agreement with the actual out-of-phase thermal-mechanical fatigue lives within a factor of 1.5. Conventional strain range partitioning method exhibited a poor accuracy in the prediction of in-phase range partitioning method in a conservative way. By the way life prediction of thermal-mechanical fatigue by Taira's equivalent temperature method and spanning fartor method showed good agreement within out-of-phase thermal-mechanical fatigue.

  • PDF

CREEP-FATIGUE CRACK GROWTH AND CREEP RUPTURE BEHAVIOR IN TYPE 316 STAINLESS STEELS- EFFECT OF HOLD TIME AND AGING TREATMENT

  • Mi, J.W.;Won, S.J.;Kim, M.J.;Lim, B.S.
    • International Journal of Automotive Technology
    • /
    • 제1권2호
    • /
    • pp.71-77
    • /
    • 2000
  • High temperature materials in service are subjected to mechanical damage due to operating load and metallurgical damage due to operating temperature. Therefore, when designing or assessing life of high temperature components, both factors must be considered. In this paper, the effect of tensile hold time on high temperature fatigue crack growth and long term prior thermal aging heat treatment on creep rupture behavior were investigated using STS 316L and STS 316 austenitic stainless steels, which are widely used for high temperature components like in automotive exhaust and piping systems. In high temperature fatigue crack growth tests using STS 316L, as tensile hold time increased, crack growth rate decreased in relatively short tensile hold time region. In long term aged specimens, cavity type microcracks have been observed at the interface of grain boundary and coarsened carbide.

  • PDF

선박용 스프링강의 피로수명에 미치는 쇼트피닝의 영향 (A Effect of Shot Peening for Fatigue Life of Spring Steel for Vessel Application)

  • 유형주;박경동
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권4호
    • /
    • pp.426-435
    • /
    • 2005
  • The lightness of components required in automobile and machinery industries is requiring high strength of components. Therefore this requirement is accomplished as the process of shot-peening method that the compressive residual stress is made on the metal surface as one of various improvement methods. Special research is, therefore, needed about compressive residual stress on the metal surface in the process of shot-peening method. Therefore, in this paper the effect of compressive residual stress of spring steel(JISG SUP-9) by shot-peening on fatigue crack growth characteristics in environmental condition(temperature) and mechanical condition(shot velocity, stress ratio) was investigated with considering fracture mechanics. By using the methods mentioned above, the following conclusions have been drawn. (1) The fatigue crack growth rate(da/dN) of the shot-peened material was lower than that of the un-peened one. In high temperature range. fatigue crack growth rate decreased with increasing temperature range, while fatigue crack growth rate increased by decreasing temperature in low temperature. (2) Fatigue life shows more improvement in the shot-peened material than in the un-peened material. And compressive residual stress of surface on the shot-peen processed operate resistance force of fatigue crack propagation.

쇼트피이닝 가공된 차량용 스프링강의 피로수명에 미치는 고온의 영향 (A Study on The Effect of High Temperature on Fatigue Life of The Vehicle Spring Steel)

  • 박경동;하경준
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.167-172
    • /
    • 2002
  • In this study, CT specimens were prepared from spring steel(SUP9) processed shot peening which was room temperature, high temperature experiment. And ire got the following characteristics from fatigue crack growth test carried out in the environment of room, and high temperature at $25^{\circ}C,\;100^{\circ}C,\;150^{\circ}C$ and $180^{\circ}C$ in the range of stress ratio of 0.3 by means of opening mode displacement. The threshold stress intensity factor range ${\Delta}Kth$ in the early stage of fatigue crack growth (Region I) and stress intensity (actor range ${\Delta}K$ in the stable of fatigue crack growth (Region II) was decreased in proportion to descend temperature. It assumed that the fatigue resistance characteristics and fracture strength at high temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region.

  • PDF

코발트기 초내열합금 ECY768의 고온 저주기피로 거동 (Low Cycle Fatigue Behavior of Cobalt-Base Superalloy ECY768 at Elevated Temperature)

  • 양호영;김재훈;하재석;유근봉;이기천
    • 한국안전학회지
    • /
    • 제28권3호
    • /
    • pp.18-22
    • /
    • 2013
  • The Co-base super heat resisting alloy ECY768 is employed in gas turbine because of its high temperature strength and oxidation resistance. The prediction of fatigue life for superalloy is important for improving the efficiency. In this paper, low cycle fatigue tests are performed as variables of total strain range and temperature. The relations between strain energy density and number of cycle to failure are examined in order to predict the low cycle fatigue life of ECY768 super alloy. The lives predicted by strain energy methods are found to coincide with experimental data and results obtained from the Coffin-Manson method. The fatigue lives is evaluated using predicted by Coffin-Manson method and strain energy methods is compared with the measured fatigue lives at different temperatures. The microstructure observing was performed for how affect able to low-cycle fatigue life by increasing the temperature.

G91강 저주파 피로균열 성장에 미치는 온도와 응력비의 영향 (Effects of Temperature and Stress Ratio on Low-Cycle Fatigue Crack Growth of G91 Steel)

  • 김종범;황수경;김범준;이종훈;박창규;이형연;김문기;임병수
    • 대한금속재료학회지
    • /
    • 제50권4호
    • /
    • pp.271-279
    • /
    • 2012
  • 9-12% Cr steels have been used in thermal power plants which repeat start and stop operations. Major factors of fatigue life are temperature, frequency, stress ratio, holding time, microstructure, and environment. Normally, fatigue life decreases at high temperature, low frequency, high stress ratio, and long holding time conditions. A Mod.9Cr-1Mo steel, called G91, was developed at ORNL (Oak Ridge National Laboratory, USA) and was adopted as a high-temperature structural material in the ASME Code in 2004. However, its low-cycle fatigue and fatigue crack growth characteristics have been rarely studied. In this work, we have investigated the low-cycle fatigue crack growth behaviors of G91 steel under various test conditions in terms of temperature and stress ratio. As temperature and stress ratio increase, the crack growth rate becomes faster and striation distance also increases. On the other hand, the number of branch cracks decreases.

HIPS(HR-1360) 재료의 피로 특성 평가 (Fatigue Characteristic of HIPS(HR-1360) Materials)

  • 박재실;석창성;이종규;이재혁
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.129-134
    • /
    • 2000
  • Recently, HIPS(High Impact Polystyrene) materials are spot-lighted as office equipment, home electronics, electronics appliances housing, packing containers, etc. But its using are occur to problem caused by fatigue fracture. However, its strength is larged affected by environmental conditions. So, in this paper it tried to analyze the effect of temperature by tensile test and fatigue test. It was observed that yield strength and ultimate strength, fatigue life of same stress decreased relatively with increase temperature. Further, this paper predict S-N curve using the result of tensile test and micro vickers hardness test. For this purpose, the management in the engineering department is able to design the fatigue life of HIPS(HR-1360) materials.

  • PDF

STS 316鋼 의 高溫低사이클 疲勞强度 와 破壞擧動 에 미치는 크리이프 - 疲勞 相互作용 의 影響 (Effect of creep-fatigue interaction on high temperature low cycle fatigue strength and fracture behavior of STS 316 stainless steels)

  • 오세욱;이규용;김중완;문무경
    • 대한기계학회논문집
    • /
    • 제9권2호
    • /
    • pp.140-149
    • /
    • 1985
  • 본 연구는 오오스테나이트계 STS 316 스테인레스강에 대하여 온도 550.deg. C의 대 기중에서, 변형율제어에 의한 인장-압축에 크리이프 유지시간을 갖는 고온저사이클 피 로시험을 하여 변형율폭 및 크리이프 유지시간이 피로수명에 미치는 영향과 파단면을 주사형 전자현미경으로 관찰하여 크리이프-피로 상호작용이 피로파단면에 미치는 크리 이프 효과를 실험 고찰하였다.