• Title/Summary/Keyword: High Technology Industry

Search Result 3,655, Processing Time 0.036 seconds

Monitoring and machinability evaluation in high-speed machining of high hardness steel(SKD11) (고경도강(SKD11)의 고속가공에서 가공성 평가 및 감시)

  • 김전하;김경균;강영창;김정석;김기태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.987-990
    • /
    • 2000
  • In modern manufacturing industry such as aerospace, vehicle and die/mold industry, the high hardness malarial which is remarkable in aspects of durability is effectively used. The high-speed and precision machining technology has been applied in these fields. In this study, efficient sensors in high-speed machining by observing similar tendency through comparing cutting force with AE signal, gap sensor signal and accelerometer signal are selected, and machinability of high-speed machining is experimentally evaluated. We performed a basic research for sensing system construction to monitor a machine tool and machining condition.

  • PDF

Development of a Nanotechnology Competitiveness Index (나노기술 경쟁력 지수의 개발)

  • Bae, Seoung-Hun;Kim, Jun Hyun;Shin, Kwang Min;Yoon, Jin Seon;Shin, Min Soo;Kang, Sang Kyu
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.5
    • /
    • pp.345-353
    • /
    • 2016
  • In this study, we have developed an index suitable for determining nanotechnology competitiveness. The analytic hierarchy process is used to compared Korean nanotechnology competitiveness with nine high-ranked countries in terms of OECD GDP along with China, India, and Russia. We fund Korea to be ranked fourth among the twelve countries. Despite Korean high rank, it has some problems with regard to infrastructure and industry development. To become a leading country in nanotechnology, Korea needs to strategically invest into research capabilities for nanotechnology, support industry convergence based on nanotechnology, and increase investment into infrastructure development. The findings of this study will contribute to enhancing nanotechnology-related policies and research.

Current R&D Status of Fuel Cell Membranes by Radiation in Korea (방사선을 이용한 연료전지막 국내 제조 기술 개발 현황)

  • Shin, Junhwa;Sohn, Joon-Yong;Nho, Young-Chang;Kang, Tai-Jin;Kim, Dong-Soo;Im, Don-Sun;Lee, Byoung Hun;Kim, Jae-Ho
    • Journal of Radiation Industry
    • /
    • v.6 no.4
    • /
    • pp.289-297
    • /
    • 2012
  • Since Nafion is very expensive and shows the decreased fuel cell performance over $80^{\circ}C$ operating temperature, much work has been carried out in the search for cheaper membrane with high fuel cell performance. Radiation is known to be very useful for the preparation of the polymer electrolyte membranes since it can be effectively used for the introduction of ion conducting functional groups into the commercial film with high mechanical and chemical properties. Here, we summarize the our recent progress in the development of fuel cell membranes by utilizing radiation.

RESEARCH OF WELDING EFFECT ON STRUCTURAL INTEGRITY AT HIGH TEMPERATURE

  • Tu, Shan-Tung;Yoon, Kee-Bong
    • Proceedings of the KWS Conference
    • /
    • 1998.10a
    • /
    • pp.11-24
    • /
    • 1998
  • The invention of fusion wilding technology has brought on a revolutionary change in manufacturing industry which enables the construction of large scale high temperature plants in chemical, petrochemical and power generation industries. However, among the failure cases of high temperature components, premature failures of weldments have taken a large percentage that indicates the detrimental effect of welding on structural integrity. The accurate prediction of the high temperature behaviour of welded components is thus becoming increasingly important in order to realise an optimised design and maintenance of a plant life. In the present paper, recent research activities on high temperature behaviour of welded structures are briefly summarised. A local deformation measuring technique is proposed to determine the creep properties of weldment constituents. A damage mechanics approach is introduced to study the life reduction and ductility reduction due to the presence of a weld in high temperature structures. Finally, the high temperature creep crack growth in weldments is discussed.

  • PDF

Proteome Analysis of Escherichia coli after High-dose Radiation

  • Lim, Sangyong;Lee, Misong;Joe, Minho;Song, Hyunpa;Kim, Dongho
    • Journal of Radiation Industry
    • /
    • v.5 no.1
    • /
    • pp.1-5
    • /
    • 2011
  • Since proteomics can be employed to compare changes in the expression levels of many proteins under particular genetic and environmental conditions, using mass spectrometry to establish radiation stimulon, we performed two-dimensional gel electrophoresis and identified E. coli proteins whose expressions are affected by high dose of ionizing radiation. After exposure to 3 kGy, it was found that 6 proteins involved in carbon and energy metabolism were reduced. Although 4 of 7 protein spots showing a significant increase in expression level were neither identified nor classified, uridine phosphorylase (Udp), superoxide dismutase (SodB), and thioredoxin-dependent thiol peroxidase (Bcp) were proven to be up-regulated after irradiation. This suggests that E. coli subjected to high doses of radiation (3 kGy) may operate a defense system that is able to detoxify reactive oxygen species and stimulate the salvage pathway of nucleotide synthesis to replenish damaged DNA.

Utilising artificial neural networks for prediction of properties of geopolymer concrete

  • Omar A. Shamayleh;Harry Far
    • Computers and Concrete
    • /
    • v.31 no.4
    • /
    • pp.327-335
    • /
    • 2023
  • The most popular building material, concrete, is intrinsically linked to the advancement of humanity. Due to the ever-increasing complexity of cementitious systems, concrete formulation for desired qualities remains a difficult undertaking despite conceptual and methodological advancement in the field of concrete science. Recognising the significant pollution caused by the traditional cement industry, construction of civil engineering structures has been carried out successfully using Geopolymer Concrete (GPC), also known as High Performance Concrete (HPC). These are concretes formed by the reaction of inorganic materials with a high content of Silicon and Aluminium (Pozzolans) with alkalis to achieve cementitious properties. These supplementary cementitious materials include Ground Granulated Blast Furnace Slag (GGBFS), a waste material generated in the steel manufacturing industry; Fly Ash, which is a fine waste product produced by coal-fired power stations and Silica Fume, a by-product of producing silicon metal or ferrosilicon alloys. This result demonstrated that GPC/HPC can be utilised as a substitute for traditional Portland cement-based concrete, resulting in improvements in concrete properties in addition to environmental and economic benefits. This study explores utilising experimental data to train artificial neural networks, which are then used to determine the effect of supplementary cementitious material replacement, namely fly ash, Ground Granulated Blast Furnace Slag (GGBFS) and silica fume, on the compressive strength, tensile strength, and modulus of elasticity of concrete and to predict these values accordingly.

A Study on the Isomorphization of ESG Activities of Large Korean Companies by Comparison of Carbon High-Emission and Carbon Low-Emission Industries (탄소 다배출 및 비다배출 업종 비교를 통한 국내 대기업의 ESG 활동 동형화 현상 연구)

  • Se Hoon Park;Chan Ha Ryu;Se Jin Park;Dong Pil Chun
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.19 no.2
    • /
    • pp.1-17
    • /
    • 2023
  • This study aimed to examine the characteristics of ESG activities among major domestic companies in the carbon-emitting industry compared to industries with lower emissions, as ESG has emerged as a significant agenda across various industries. Departing from the traditional focus on the "why" of ESG, which primarily centers around financial performance, this research sought to uncover the "how" of effective ESG management in domestic companies. The analysis involved studying the sustainability reports of 124 companies using the Global Reporting Initiative (GRI) indicators and comparing high-emitting and non-high-emitting industries. The findings revealed industry-specific patterns in companies' ESG activities, providing valuable insights for future ESG evaluations and assessments. Furthermore, the advancement of rating analysis methods holds implications for ESG rating agencies and financial authorities in terms of policy-making.